КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Правило Крамера решения систем линейных уравнений
Теорема. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу ее расширенной матрицы. Критерий совместности системы линейных уравнений Ответ на первый вопрос дает теорема Кронекера-Капелли – критерий совместности системы линейных уравнений. Рассмотрим невырожденные системы линейных уравнений, т.е. системы, у которых и определитель матрицы системы отличен от нуля. Определитель матрицы называется определителем системы. Следующая теорема, называемая правилом Крамера, отвечает на второй вопрос. Пусть дана система двух линейных уравнений с двумя неизвестными:
Коэффициенты этой системы составляют квадратную матрицу второго порядка:
Решим систему (2.3). Для этого умножим первое уравнение системы на , второе – на и вычтем из первого уравнения второе: . Аналогично, исключая , получим . Если , то найдем единственное решение системы: . Общий знаменатель значений неизвестных и , обозначаемый через , называется определителем матрицы . Это определитель второго порядка. Числителями неизвестных и являются определители тоже второго порядка . Откуда . Мы получили правило Крамера решения системы двух линейных уравнений с двумя неизвестными. Правило Крамера. Если определитель системы линейных уравнений с неизвестными отличен от нуля, то система имеет единственное решение: , где ПРИМЕР 2. Решить методом Крамера систему: Так как число уравнений и число неизвестных в системе совпадают, и определитель матрицы системы , то решение системы может быть найдено по формулам Крамера. Имеем: , . Следовательно, , .
Мы ответили на три вопроса относительно систем линейных уравнений. Однако применение теоремы Крамера, которая позволила дать этот ответ, приводит к слишком громоздким вычислениям. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса или матричный метод.
Дата добавления: 2014-01-03; Просмотров: 508; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |