Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Адаптація риб до змін вмісту СО2 у воді

Спостереження за поведінкою риб різних видів і вікових груп свідчать, що поряд з позитивним впливом розчиненого у воді СО2 на їх організм, мають місце прояви негативних реакцій. Такі різнонаправлені ефекти пов’язані з вмістом розчиненого у воді діоксиду вуглецю. При деяких рівнях розчиненого СО2, не тільки різко гальмується ріст риб, але й настає їх смерть. У той же час вода, позбавлена СО2, негативно впливає на вихід личинок при інкубації ікри та їх подальший розвиток. При відсутності у воді СО2 переважна більшість ікри синця, ляща, плоскирки і плітки гине ще до стадії викльовування. Так саме діє підвищення концентрації СО2 до 12,1–15,4 мг/дм3. Цьогорічна молодь осетра і севрюги при концентрації СО2 у воді в межах 0,03–0,45 ммоль/дм3 (в середньому 17 мг/дм3), не відстає в рості, а при її підвищенні до 1,1–1,2 ммоль/дм3 (в середньому 52 мг/дм3) спостерігається різке пригнічення їх росту і зменшення поїдання корму.

Діоксид вуглецю є важливим елементом у механізмі регуляції дихання у риб, зокрема, при збудженні дихального центру. Наприклад, у пічкурів при збільшенні концентрації СО2 у воді від 3,5 до 50 мг/дм3 кількість дихальних рухів зростала від 61 до 100 за 1 хвилину. При подальшому її зростанні (до 109 мг/дм3) порушувалась координація рухів, пригнічувався дихальний ритм зябер, і зрештою риба гинула.

Різні види риб виявляють неоднакову чутливість до впливів вуглекислоти. З промислових видів риб найменш чутливі короп і карась, а з морських – опсанус. Значні коливання СО2 у воді витримує в’юн. При підвищенні концентрації СО2 у воді до 60–100 мг/дм3 він переходить на повітряне дихання. Поряд з цим, окремі прісноводні і морські риби виявляють підвищену чутливість навіть до невеликих змін концентрації СО2 у воді. Так, наростання дихальних рухів спостерігається у окуня вже при підвищенні насичення води діоксидом вуглецю на 0,8 %, а у гольяна – на 2,0 %.

Щоб забезпечити організм необхідною кількістю кисню в умовах гіперкапнії (підвищена напруга вуглекислоти в крові) у риб посилюється не тільки інтенсивність дихальних рухів зябрових покришок, але й зяброва вентиляція. Так, у форелі при загрозі розвитку гіперкапнії об’єм вентиляції зябер збільшується майже у 4 рази.

Негативний вплив підвищеного вмісту СО2 у воді пов’язаний з тим, що, проникаючи у кров, він зв’язується з гемоглобіном, внаслідок чого зменшується здатність останнього до перенесення кисню. У свою чергу це приводить до ненасиченості тканин киснем, посилення гліколітичних процесів і закислення внутрішнього середовища. При підвищенні концентрації розчиненого СО2 у воді і загрозі розвитку вуглекислотної ацидемії (закислення крові) включаються гомеостатичні механізми підтримання кислотно-лужної рівноваги в організмі. Це, в першу чергу, бікарбонатна та інші буферні системи крові, ренальні і екстраренальні механізми підтримання збалансованого вмісту кислих і лужних компонентів у біологічних рідинах і тканинах.

На відміну від наземних тварин, які можуть регулювати парціальний тиск О2 і СО2 в альвеолярному повітрі за рахунок зміни частоти і глибини дихання, риби позбавлені можливості змінювати напругу газів в омиваючій зябра воді. Другою особливістю водяних тварин є те, що не тільки розчинений у воді кисень, але й діоксид вуглецю та гідрокарбонат натрію (NаHCО3) можуть проникати в організм через зябра і шкіру. Майже 92,7 % вуглецю із NaHCO3 надходить через залозистий апарат зябер в організм верхівки, коропа та деяких осетрових, і тільки 7,3–14,8 % проникає через шкіру. Проникаючи в організм, ці речовини можуть поповнювати резерв кислот і гідрокарбонатів і тим самим впливати на кислотно-лужну рівновагу. Відомо, що у регуляції активної реакції крові (рН) приймають участь білкова, гідрокарбонатна і фосфатна буферні системи, але найбільш лабільною щодо впливу вуглекислоти є гідрокарбонатна буферна система. Це підтверджується прямою залежністю між вмістом вільної вуглекислоти у водному середовищі та змінами концентрації гідрокарбонатних іонів у крові риб.

Саме накопичення у плазмі крові гідрокарбонатів є вирішальним фактором гомеостатичної стабілізації рН в умовах тривалого перебування риб у середовищі з підвищеним вмістом СО2. Зростання гідрокарбонатів плазми відбувається за рахунок обміну іонів водню (Н +) вугільної кислоти з іншими буферними системами (білковою, фосфатною). При тривалому перебуванні риб у середовищі із значно підвищеним рівнем СО2 у воді, коли підтримання співвідношення кислих і лужних елементів в організмі риб не може забезпечуватись лише гідрокарбонатною системою, включаються ниркові та інші механізми підтримування гомеостазу, які забезпечують виведення з організму кислих фосфатів з сечею, утримання гідрокарбонатів і вихід лужних елементів (Na, K, Ca) з кісткових депо у кров, внаслідок чого в ній зростає концентрація лужних елементів. Внаслідок цього розширюються межі адаптації риб до вуглекислотного впливу та забезпечується підтримання рН внутрішнього середовища у межах фізіологічного оптимуму.

Як свідчать експериментальні дані, коропи дворічного віку можуть досить ефективно регулювати рН крові при перебуванні їх у водному середовищі з концентрацією СО2 у воді від 0,1 до 0,8 ммоль/дм3. Із збільшенням її до 1,1 і особливо до 2,05 ммоль/дм3 рівень зростання гідрокарбонатів у крові риб недостатній для збалансування кислотних еквівалентів, що і супроводжується розвитком вуглекислотної ацидемії.

При незбалансованному підвищенні в крові риб вмісту молекулярної СО2 і гідрокарбонатів розвиваються глибокі порушення фізіологічних процесів, які можуть закінчуватись загибеллю риб. Таким чином, існують межі компенсаторного підвищення СО2 у воді, вище яких організм не може нормально існувати. У коропів дворічного віку коливання СО2 у воді від 0,1 до 0,8 ммоль/дм3 не супроводжуються змінами кислотно-лужної рівноваги крові. Для інших видових і вікових груп риб межі толерантності до вмісту СО2 у воді можуть бути іншими. Але загальна реакція буферних систем на зміни газового режиму води у всіх риб схожа. Наявність зв’язку між вмістом розчиненого у воді СО2 та окремих форм вугільної кислоти у крові, визначає характер впливу газового режиму водного середовища на еколого-фізіологічні показники в організмі риб. У зв’язку з цим діоксид вуглецю в оптимальному діапазоні концентрацій є не тільки регулятором процесу дихання, а й важливим субстратом у біосинтетичних реакціях.

Глава 15. Кругообіг та роль азоту у водних екосистемах

Кругообіг азоту у біосфері, в тому числі і гідросфері, включає чотири основні процеси: азотфіксацію, або біологічне засвоєння молекулярного азоту повітря, амоніфікацію, або розклад (за участю мікроорганізмів) азотмістких органічних сполук (білків, нуклеїнових кислот, сечовини тощо) до утворення вільного аміаку (NH3); нітрифікацію, або окиснення аміаку і утворення нітритів (NO2 ), нітратів (NO3 ) та азотної кислоти (НNO3). Завершується цикл азоту процесом денітрифікації, що включає мікробіологічне відновлення окиснених сполук азоту (NO2 , NO3 ) до газоподібного азоту (N2). На цій стадії частина азоту у вільному стані переходить в атмосферу. Денітрифікація запобігає надмірному накопиченню оксидів азоту, які можуть бути токсичними для гідробіонтів, в донному грунті і воді (рис. 131).

Рис. 131. Кругообіг азоту у водоймах (за Хендерсон-Селлерс, Маркленд, 1990)

Кругообіг азоту в водних екосистемах пов’язаний з утилізацією атмосферного N2 та надходженням з водозбірної площі легкорозчинних у воді мінеральних форм азоту – нітратних (NO3 ), нітритних (NO2 ) та амонійних (NH4 +) іонів. Крім того, у водойми можуть надходити органічні сполуки алохтонного (іззовні) і автохтонного (внутрішньоводоймного) походження, які містять у своєму складі азот. При деструкції органічних речовин відбувається гідроліз білків до більш дрібних молекул, які можуть дифундувати через оболонку клітин, де вони розпадаються з виділенням аміаку.

Більшість організмів гідросфери засвоюють азот тільки у формі амонійних солей, нітратів або деяких низькомолекулярних органічних сполук (наприклад, амінокислот). У зв'язку з цим, фіксацію азоту, тобто перетворення газоподібного азоту у нітрати, які засвоюються водяними організмами, за важливістю можна порівняти з фотосинтезом. Саме ці два процеси визначають існування різних форм життя на Землі.

У метаболічні реакції азот включається у молекулярній або нітратній формі. Як у процесах азотфіксації, так і асиміляції азоту з нітратів, кінцевим продуктом реакції є утворення амінокислот та приєднання їх до різних молекул-акцепторів. На цьому завершується цикл утворення білків та їх похідних.

<== предыдущая лекция | следующая лекция ==>
Фотосинтез. Фіксація вуглекислоти автотрофними і гетеротрофними організмами | Азотфіксація у водних екосистемах
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 703; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.