Здесь мы рассмотрим случай, когда число испытаний в схеме Бернулли растет (), а вероятность успеха в единичном испытании р остается фиксированной. Верна так называемая интегральная теорема Муавра-Лапласа.
Пусть m - число успехов в последовательности из n независимых испытаний с вероятностью успеха в единичном испытании p. Пусть .
При (13)
где функция - нормальная функция распределения.
Доказательство теоремы основано на локальной теореме Лапласа.
Нормальный закон распределения дает достаточно точные результаты при большом числе испытаний. При n≥20 и , результаты, полученные на основании нормального закона и биномиального распределения практически не отличаются.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление