Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод контурных токов в матричной форме

В соответствии с введенным ранее понятием матрицы главныхконтуров В, записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам.

Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c=n-m+1. Выражение (6) запишем следующим образом:

. (7)

 

В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j –го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j –й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения

, (8)

 

где - столбцовая матрица контурных токов; - транспонированная контурная матрица.

С учетом (8) соотношение (7) можно записать, как:

(9)

 

Полученное уравнение представляет собойконтурные уравнения в матричной форме. Если обозначить

, (10)

 

. (11)

 

то получим матричную форму записи уравнений, составленных по методу контурных токов:

, (12)

 

где - матрица контурных сопротивлений; - матрица контурных ЭДС.

В развернутой форме (12) можно записать, как:

, (13)

 

то есть получили известный из метода контурных токов результат.

Рассмотрим пример составления контурных уравнений.

Пусть имеем схему по рис. 2. Данная схема имеет четыре узла (m=4) и шесть обобщенных ветвей (n=6). Число независимых контуров, равное числу ветвей связи,

c=n-m+1=6-4+1=3.

Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.

Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:

В

 

.Диагональная матрица сопротивлений ветвей

Z

 

 

Матрица контурных сопротивлений

Zk = B Z BT

 

.

Матрицы ЭДС и токов источников

 

 

Тогда матрица контурных ЭДС

 

.

Матрица контурных токов

.

Таким образом, окончательно получаем:

,

где ; ; ; ; ; ; ; ; .

Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.

 

<== предыдущая лекция | следующая лекция ==>
Виды штриховки | 
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 319; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.