Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

III. Физиологические свойства сердечной мышцы

1. Автоматия – это способность клеток рабочего миокарда и проводящей системы сердца генерировать спонтанные процессы возбуждения. Автоматией обладают клетки специфической мускулатуры проводящей системы. Её клетки бедны миофибриллами и богаты саркоплазмой, напоминают по строению эмбриональную мышечную ткань. Кроме этого, автоматией обладают и клетки рабочего миокарда, но это свойство у них менее выражено. Теории, объясняющие данное явление в сердце, связывали автоматию со свойствами мышечной ткани сердца – миогенная теория. Подтверждением этой теории является следующее: а) у человеческого эмбриона на 18-20 неделе внутриутробного развития отмечается автоматизм кардиомиоцитов; б) в опытах in vitro автоматизм рабочего миокарда в условиях полной денервации наблюдается в течение 1 суток; в) сердечные клетки эмбриона в культуре ткани.

ИОННЫЙ МЕХАНИЗМ АВТОМАТИИ. ПД пейсмейкерных клеток (т.е. клеток водителей ритма) возникает как результат перезарядки их мембраны. Это обеспечивается селективной ионной проницаемостью для ионов Na+, а позже – для ионов Са2+. Как только уровень деполяризации достигнет 20 мВ (т.е. на 20 мВ уменьшается МПП), возникает распространяющийся ПД, фаза реполяризации связана с закрытием натриевых и кальциевых каналов. ПД, который возникает в пейсмейкерных клетках, вызывает деполяризацию соседних клеток рабочего миокарда, в результате чего возбуждение распространяется. Уменьшение мембранного потенциала происходит в диастолу – медленная диастолическая деполяризация.

Чем быстрее происходит развитие медленной диастолической деполяризации, тем чаще возникает возбуждение клетки – водителя ритма, и тем чаще будет происходить сокращение сердца.

Впервые в сердце автоматически генерализованный ПД – процесс возбуждения – возникает в синоатриальном узле, описанном Кисом и Флеком. Это доказано в электрофизиологических исследованиях с применением микроэлектродов. Другим доказательством является опыт Гаскелла с применением местного охлаждения или согревания синоатриального узла. Ограниченное охлаждение узла вызывает резкое замедление сердечной деятельности, которое не воспроизводится при подобном охлаждении других областей сердца. Противоположный эффект – учащение работы сердца – возникает в условиях местного ограниченного согревания. Третье доказательство – изменение работы сердца при локальном повреждении или отравлении данного узла.

Классическим доказательством подобного явления в синоатриальном узле являются лигатуры Станниуса, который в своих опытах на сердце холоднокровного животного (лягушки) не только доказал наличие в синусном узле (у теплокровных – синоатриальный узел) очага возбуждения, но и указал на наличие таких очагов в атриовентрикулярном узле, и даже в волокнах Пуркинье верхушки сердца. Лигатуры Станниуса: 1- отделяющая, 2 – раздражающая, 3 - отделяющая.

Все эти эксперименты подтверждают наличие в синоатриальном узле водителя ритма 1-го порядка, а сам узел – центр автоматии первого порядка. От него возбуждение распространяется по специализированным мышечным волокнам: от синоатриального узла к атриовентрикулярному – по пучку, открытому в 1907 г. Кисом и Флеком, а по предсердиям – по пучку Бахмана (открыт автором в 1916 г.). Далее возбуждение распространяется через атриовентрикулярный узел по ножке Гиса и её разветвлениям – по желудочкам сердца, а по волокнам Пуркинье – от верхушки сердца к их основанию. В результате возбуждение охватывает весь миокард.

В здоровом сердце автоматия синоатриального узла подавляет возбуждение ниже расположенных участков проводящей системы сердца. Подобное явление описано как градиент автоматии В. Гаскелла, или закон градиента сердца: степень автоматии отделе проводящей системы тем выше, чем ближе он расположен к синоатриальному узлу. Так, автоматия синоатриального узла – 60-80 ПД/мин, атриовентрикулярного – 40-50ьПД/мин, пучка Гиса и волокон Пуркинье – 20 ПД/мин. В нормальных условиях наиболее выраженная автоматия SA-узла подавляет автоматию AV-узла и волокон Пуркинье. Если с помощью лигатуры разобщить функционально эти узлы, возникает атриовентрикулярный ритм сокращения желудочков, а предсердия сокращаются в прежнем частотном режиме.

В нормальных физиологических условиях функционирует только один узел – синоатриальный, водители ритма, находящиеся в желудочках (атриовентрикулярный – II порядка и волокна Пуркинье – III порядка) «безмолствуют», их автоматия подавлена. После выключения синоатриального узла в эксперименте восстановление автоматии AV-узла происходит через некоторое время – от нескольких секунд до нескольких десятков секунд. В это время наблюдается асистолия, а пауза называется преавтоматическая пауза. Затем наблюдается ритм сокращения сердца, характерный для AV-узла – атриовентрикулярный ритм: предсердия и желудочки сокращаются практически одновременно, так как возбуждение из AV-узла к предсердиям и желудочкам распространяется почти одновременно, благодаря топографии AV-узла.

Такое соподчиненное положение узлов – градиент автоматии, а также распространение возбуждения вдоль проводящей системы и невозможность его распространения ретроградно обеспечивает координацию, т.е. последовательность вовлечения в сократительный процесс сначала предсердий, затем – желудочков, что наряду с клапанным аппаратом сердца обеспечивает постоянный однонаправленный ток крови через сосудистую систему организма.

2. Возбудимость сердечной мышцы возникает при действии ряда раздражителей – механических, термических, химических. Однако сила раздражителя должна быть равной пороговой или быть сверхпороговой. При этом происходит следующее: при постепенном увеличении силы раздражителя в ответ на пороговое значение его возникает максимальная ответная реакция – сокращение максимальной силы, которую возможно развить.

На допороговые раздражители ократительного ответного эффекта не наблюдается, на пороговое – сразу максимальное укорочение, на сверхпороговое – ответная сократительная реакция остается постоянной, прежней, как на пороговое раздражение. Т.е мышца сердца отвечает на раздражители согласно закону «всё или ничего», открытому Боудичем на препарата сердечной мышцы в опыте in vitro. Этот закон был открыт Боудичем при изучении сократимости рабочего миокарда верхушки сердца, а затем был применен для описания свойства возбудимости скелетной мускулатуры. Это произошло в силу того, что Боудич изучал возбуждение в миокарде по конечному результату существования этого свойства, т.е. по сокращению миокарда. Нет возбуждения, нет и сокращения. Но выявленная закономерность объективно характеризовала как возбудимость, так и сократимость именно миокарда. В скелетной же мускулатуре этот закон характеризует лишь свойство возбудимости. Сила же сокращений скелетной мускулатуры (эффект ее укорочения) градуально зависит от увеличения силы раздражителя, и не подчиняется закону «всё или ничего».

В миокарде же максимальное укорочение на предъявление порогового раздражителя возможно из-за наличия в его структуре нексусов, поэтому наблюдается одновременное вовлечение в возбуждение рабочего миокарда предсердий, а затем желудочков. С другой стороны, очевидно, кардиомиоциты обладают возбудимостью одинаковой, отсюда для их возбуждения необходима равная сила порогового раздражителя. Физиологический смысл – в ответ на нервный импульс возбуждение, а затем сокращение охватывает весь миокард отдела сердца и достигается выброс необходимого систолического объема крови в сосудистое русло или в следующий отдел.

ОСОБЕННОСТИ ВОЗБУДИМОСТИ В МИОКАРДЕ СВЯЗАНЫ С ФОРМОЙ ПОТЕНЦИАЛА ДЕЙСТВИЯ – платообразный, а также с его длительностью и соответствием фаз возбуждения фазам потенциала действия.

В миокарде длительность одиночного цикла возбуждения равна длительности одиночного цикла сокращения в одиночном мышечном волокне – 0,3 с. Из них 0,27 с приходится на фазу абсолютной рефрактерности. Отсюда: пока миокард отвечает сокращением на предшествующее раздражение не может вызвать новый процесс возбуждения, а следовательно, и дополнительное сокращение. Поэтому:

A. В нормальных физиологических условиях отсутствуют экстрасистолы, т.е. дополнительные систолы миокарда;

B. Невозможно вызвать тетаническое сокращение, т.к. для этого необходимо явление суммации, основанное на определенной длительности фаз возбудимости и соответствия этих фаз фазам одиночного мышечного сокращения – не может быть контрактуры сердца – остановки в систолею

C. Нет кругового циклического движения процесса возбуждения по сердцу как целому органу.

D. Поэтому осуществляется нагнетательная функция сердца на фоне ритмических сокращений и расслаблений миокарда предсердий и желудочков.

Такая длительность фазы абсолютной рефрактерности является результатом наличия в миокарде платообразного ПД. Ионный механизм его формирования состоит в следующем: при нанесении раздражения возникает быстрая деполяризация за счет работы селективных ионных натриевых каналов. При достижении пика деполяризации (ПД в сердце составляет −90мВ) ионная проницаемость для натрия резко снижается и возникает избирательная проницаемость для ионов кальция, в результате фаза реполяризации во времени растягивается, что приводит к развитию длительной фазы абсолютной рефрактерности.

В эксперименте возможно вызвать дополнительное сокращение миокарда (желудочков) – желудочковую экстраситолию, в том случае, если следующий раздражитель нанести в момент расслабления миокарда. Такая экстрасистола сопровождается компенсаторной паузой. Ее механизм – в условиях экстрасистолы период абсолютной невозбудимости сердечной мышцы совпадает во времени с моментом поступления к миокарду желудочков (желудочковая экстрасистолия) очередного нервного импульса через проводящую систему. Поэтому на этот импульс миокард желудочков не может ответить сокращением. Эта систола «выпадает» и заменяется компенсаторной паузой, в течение которой возбудимость восстанавливается.

3. Проводимость – время, в течение которого все сердце как мышечный орган охватывается процессом возбуждения – 15 мсек. Возможность распространения возбуждения определяется проводимостью миокарда и его проводящей системы. Этот показатель изменяется в зависимости от субстрата:

SA-узел 4,5 – 5 м/с
AV-узел 0,02 – 0,05 м/с – атриовентрикулярная задержка
Пучок Гиса и его ножки 1 – 1,5 м/с
Волокна Пуркинье 3 м/с
Миокард желудочков и предсердий 0,9 – 1 м/с
<== предыдущая лекция | следующая лекция ==>
II. Функциональная система кровообращения | I. Нагнетательная функция сердца. Роль клапанного аппарата в ее реализации
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 1523; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.