КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод контурных токов в матричной форме. Обучение стимулирует, ведет за собой развитие, в то же время опирается на него, но не надстраивается чисто механически
Обучение стимулирует, ведет за собой развитие, в то же время опирается на него, но не надстраивается чисто механически. Вне обучения не может быть полноценного развития личности. Современная отечественная педагогика стоит на точке зрения диалектической взаимосвязи обучения и развития личности, отводя, согласно положению Л.С. Выготского, ведущую роль обучению. Обучение и развитие тесно связаны друг с другом: развитие и обучение не два параллельно протекающих процесса, они находятся в единстве. Список литературы: 1. Бордовская Н., Реан А. Педагогика. Учебное пособие. – СПб.: Питер, 2011. 2. Вульфов Б.З., Иванов В.Д., Пидкасистый П.И. Педагогика. Учебное пособие под ред. П.И. Пидкасистого. – СПб.: Юрайт-Издат, 2011. 3. Ефремов О.Ю. Педагогика. Учебное пособие. – СПб.: Питер, 2010. 4. Коджаспирова Г.М. Педагогика. – Москва, Кнорус, 2011. 5. Педагогика: Учебник / под ред. Л.П. Крившенко. - М.: Проспект, 2009. 6. Сластенин В.А. и др. Педагогика: Учеб. пособие для студ. высш. пед. учеб. заведений. - М.: Академия, 2002. В соответствии с введенным ранее понятием матрицы главныхконтуров В, записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам. Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c=n-m+1. Выражение (6) запишем следующим образом:
В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j –го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j –й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения
где - столбцовая матрица контурных токов; - транспонированная контурная матрица. С учетом (8) соотношение (7) можно записать, как:
Полученное уравнение представляет собойконтурные уравнения в матричной форме. Если обозначить
то получим матричную форму записи уравнений, составленных по методу контурных токов:
где - матрица контурных сопротивлений; - матрица контурных ЭДС. В развернутой форме (12) можно записать, как:
то есть получили известный из метода контурных токов результат. Рассмотрим пример составления контурных уравнений. Пусть имеем схему по рис. 2. Данная схема имеет четыре узла (m=4) и шесть обобщенных ветвей (n=6). Число независимых контуров, равное числу ветвей связи, c=n-m+1=6-4+1=3. Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3. Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:
.Диагональная матрица сопротивлений ветвей
Матрица контурных сопротивлений
. Матрицы ЭДС и токов источников
Тогда матрица контурных ЭДС
. Матрица контурных токов
Таким образом, окончательно получаем: , где ; ; ; ; ; ; ; ; . Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.
Дата добавления: 2014-01-03; Просмотров: 445; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |