Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системы защиты работников от воздействия ЭМП и ЭМИ




Методы и средства контроля ЭМП

Основные требования к проведению контроля уровней ЭМИ РЧ установлены в СанПиН 2.2.4/2.1.8.055-96 «ЭМИ радиочастотного диапазона». Гигиеническая оценка облучаемости лиц, подвергающихся воздействию ЭМИ РЧ, проводится на основании определения двух параметров:

- интенсивности ЭМИ;

- времени воздействия ЭМИ.

Интенсивность ЭМИ определяется путем измерения напряженности электрического и магнитного полей в диапазоне частот ниже 300 МГц и плотности потока энергии ЭМИ в диапазоне частот выше 300 МГц.

Время воздействия излучения определяется на основании документов, регламентирующих профессиональные обязанности работников: технологических журналов и карт, а в случае необходимости - с помощью специальных хронометражных исследований.

Контроль уровней ЭМИ на рабочих местах производится не реже одного раза в год, а также при вводе в действие новых установок, при внесении изменений в конструкцию и режим работы действующих установок, после проведения ремонтных работ, при внесении изменений в средства защиты от ЭМИ, при организации новых рабочих мест.

 

Системы защиты можно разделить на две группы: пассивные и активные.

К пассивным системам защиты от ЭМП и ЭМИ относятся:

- защита временем;

- защита расстоянием;

- рациональное размещение установок в рабочем помещении;

- выделение зон излучения;

- применение средств предупреждающей сигнализации (световая, звуковая);

- установление рациональных режимов эксплуатации установок и работы обслуживающего персонала.

К активным системам защиты от ЭМП и ЭМИ относятся:

- уменьшение параметров излучения непосредственно в самом источнике излучения;

- экранирование источника излучения;

- экранирование рабочего места;

- применение средств индивидуальной защиты.

Защита временемпредусматривает ограничение времени пребывания человека в рабочей зоне и применяется обычно в тех случаях, когда нет возможности снизить интенсивность облучения до допустимых значений другими способами. Допустимое время пребывания в поле зависит от интенсивности облучения, что заложено непосредственно в санитарных нормах.

Защита расстояниемприменяется, когда невозможно ослабить интенсивность облучения другими мерами, в том числе и сокращением времени пребывания человека в опасной зоне. В этом случае увеличивают расстояние между источником излучения и обслуживающим персоналом. Этот метод защиты основан на быстром уменьшении интенсивности поля с расстоянием.

Для ЭМП радиочастот в дальней зоне плотность потока энергии ППЭ (Вт/м2) определяется по формуле:

,

где Р – мощность источника, Вт; R – расстояние до источника, м.

В ближней зоне Е ≡ R-3, НR-2.

Рациональное размещение установок в рабочемпомещении используется, в первую очередь, для источников высокочастотных полей.

Электромагнитная энергия, излучаемая отдельными элементами установок при неполном экранировании или отсутствии экранов распространяется в помещениях, отражаясь от стен и перекрытий, частично проходит сквозь них и в небольшой степени рассеивается. Отраженная энергия увеличивает плотность ЭМП в помещениях.

На основании того, что Е и Н в зоне индукции заметно ослабевают с расстоянием, установлено, например, что на каждую действующую установку, расположенную в отдельном помещении, должно приходиться не менее 25 м2 при мощности до 30 кВт и не менее 40 м2 при большей мощности. В помещении не должны находиться посторонние металлические предметы, чтобы не увеличивать напряженности полей за счет отражения.

Для защиты пользователей компьютеров от ЭМИ СанПиН 2.2.2/2.4.1340-03 установлено, что площадь на одно рабочее место пользователей ПЭВМ с ВДТ на базе плоских дискретных экранов (жидкокристаллические, плазменные) - 4,5 м2. Расстояние между боковыми поверхностями соседних мониторов должно составлять не менее 1,2 м, а между тыльной поверхностью одного монитора и экраном другого - не менее 2,0 м. Наиболее рациональным является размещение компьютеров по периметру помещения.

Выделение зон излученияпроизводится на основании инструментальных замеров интенсивности ЭМИ. Источники ЭМИ ограждают или отмечают границу зоны яркой краской на полу помещения.

Установление рационального режима работы персонала и источников ЭМИ.Например, одним из способов снижения уровня излучаемой энергии является правильный выбор генератора, т.е. для определенного технологического процесса с конкретной мощностью необходимо использовать источник соответствующей мощности, а не завышенной, включение установок производить лишь на время работы и т. д.

Для предупреждения преждевременной утомляемости пользователей ПЭВМ рекомендуется организовывать рабочую смену путем чередования работ с использованием ПЭВМ и без него.

Если характер работы требует постоянного взаимодействия с ПЭВМ без переключения на другие виды деятельности, не связанные с ПЭВМ, рекомендуется организация перерывов на 10-15 минут через каждые 45-60 минут работы.

Продолжительность непрерывной работы с ВДТ без регламентированного перерыва не должна превышать 1 час.

При работе с ПЭВМ в ночную смену (с 22 до 6 часов), независимо от категории и вида трудовой деятельности, продолжительность регламентированных перерывов следует увеличить на 30%.

Уменьшение параметров излучения непосредственно в самом источникедостигается за счет применения согласованных нагрузок и поглотителей мощности. Поглотителем энергии служат графитовые или специальные углеродистые составы, пластмассы и другие материалы, в которых энергия электромагнитных излучений преобразуется в тепловую.

Наиболее эффективным и распространенным методом защиты от воздействия ЭМП является экранирование самого источника или рабочего места. Эффективность экранирования определяется структурой ЭМП и конструкцией экрана, прежде всего его толщиной и материалом. Эффективность экранирования представляет собой степень ослабления ЭМП результате применения экрана. На практике эффективность экранирования оценивают, как правило, в децибелах. Например, эффективность экранирования электрического и магнитного поля определяют по формулам:

, (12.11)

, (12.12)

где Е, Н – соответственно напряженность электрического и магнитного полей в рассматриваемой точке при отсутствии экрана; Е+, Н+ – напряженность электрического и магнитного полей в той же точке при наличии экрана.

Экраны делятся на две группы:

- отражающие;

- поглощающие.

Защитное действие отражающих экранов основано на том, что воздействующее ЭМП создает в экране вихревые токи, наводящие в нем вторичное поле, по амплитуде почти равное, а по фазе противоположное экранируемому полю. Результирующее поле, возникающее при сложении этих двух полей быстро убывает в экране, проникая в него на незначительную глубину.

Отражающие экраны изготавливают из хорошо проводящих материалов - стали, меди, латуни, алюминия.

Глубина проникновения ЭМП высоких и сверхвысоких частот очень мала (десятые и сотые доли миллиметра), поэтому толщину экрана выбирают в этом случае по соображениям прочности.

Конструкция замкнутого экрана, его размеры и форма, как правило, определяются экранируемым объектом. Наиболее распространенными типами экранов являются сферические, цилиндрические и плоские.

В ряде случаев для экранирования высокочастотных полей применяют металлические сетки, обладающие значительно более низкими экранирующими свойствами, чем сплошные экраны. Они позволяют ослабить плотность потока энергии максимум на 20-30 дБ (в 100-1000 раз). Однако их использование дает возможность производить осмотр и наблюдение экранируемых установок, вентиляцию и освещение экранированного пространства.

Высокая эффективность экранирования достигается при использовании сотовых решеток.

Для экранирования применяют также токопроводящие краски и материалы с металлизированной поверхностью (например, цинком). Токопроводящие краски создают на основе пленкообразующего материала с добавлением проводящих составляющих, пластификатора, отвердителя. В качестве токопроводящих элементов используют коллоидное серебро, графит, сажу, оксиды металлов, порошки меди, алюминия.

Эффективность экранирования источников ЭМП экранами различной конструкции приведена в табл. 12.6.

В конструктивном отношении экранирующие устройства могут представлять собой также камеры или шкафы, в которые помещают передающую аппаратуру, кожухи, ширмы, защитные козырьки, перегородки и др.

Отражающий экран обязательно должен быть заземлен.

Таблица 12.6

Эффективность экранирования различных экранов, дБ

Материал, конструкция экрана Диапазон частот, МГц
0,15-3 3-30 30-300 300-3000 3000-10000
Сталь листовая: - сварка непрерывным швом - листы, скрепленные болтами (шаг 50 мм)       -   -   -
Жесть (фальцем): - непрерывная пайка - без пайки          
Сетка металлическая с ячейкой 1-1,5 мм          
Фольга (алюминиевая) (склейка внахлест)          
Токопроводящая краска (сопротивление 6 0м)          
Металлизация (расход металла 0,3 кг/м2)          
Экранирование смотровых и оконных проемов: - сотовая решетка - стекло с токопроводящей поверхностью             -     -     -

Примечание: Отсутствие в таблице цифровых значений для отдельных экранов означает, что рассматриваемый вариант применять не рекомендуется или он является нереализуемым.

 

Экраны, поглощающие электромагнитное излучение, изготавливают в виде тонких резиновых ковриков, эластичных или жестких листов поролона или волокнистой древесины, пропитанной определенным составом, ферромагнитных пластин. В последнее время все более широкое распространение получают керамико-металлические композиции. Коэффициент отражения указанных материалов не превышает 1-3 %.

Если применение рассмотренных выше методов защиты от ЭМП не позволяет снизить напряженность электрического и магнитного полей, плотность потока энергии до нормативных значений, то необходимо использование индивидуальных средств защиты. К средстваминдивидуальной защиты от ЭМП относятся:

- комбинезоны и халаты из металлизированной ткани, осуществляющие защиту человека по принципу сетчатого экрана;

- защитные очки с металлизированными стеклами, например, со стеклами, покрытыми бесцветной прозрачной пленкой диоксида олова, которая дает обеспечивает эффективность экранирования до 30 дБ.

 




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 1626; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.