Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон электромагнитной индукции




Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит. Направление индуцируемого тока можно определить с помощью правила Ленца.

· 40 Индуктивность контура — скалярная физическая величина, численно равная отношению собственного магнитного потока, пронизывающего контур, к силе тока в нем:

L=ΦI. L=ΦI.

В СИ единицей индуктивности является генри (Гн):

1 Гн = 1 Вб/(1 А).

 

41 Явление самоиндукции состоит в том, что при изменении силы тока в контуре возникает ЭДС индукции в этом же самом контуре. При возрастании силы тока (в ситуации 1) вихревое электрическое поле совершает отрица- тельную работу, тормозя свободные заряды.

42 Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, «натянутую» на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

43 Объемная плотность энергии магнитного поля вычисляется по формуле:

wм=B22μμ0,wм=B22μμ0,

где BB −− магнитная индукция, μμ −− магнитная проницаемость, μ0=4π⋅10−7 Гн/мμ0=4π⋅10−7 Гн/м −− магнитная постоянная. где B − магнитная индукция, μ − магнитная проницаемость, μ0=4π⋅10−7 Гн/м − магнитная постоянная. Формула для объемной плотности энергии магнитного поля имеет вид, аналогичный выражению для объемной плотности энергии электростатического поля, с тем отличием, что электрические величины заменены в нем магнитными.

44 Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества (источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки; элементарным источником магнетизма считают замкнутый ток). Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина.

45 Диамагнетизм (от греч. dia – расхождение и магнетизм) - свойство веществ намагничиваться навстречу приложенному магнитному полю.

Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т.к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.). Парамагнетизм (от греч. para – возле, рядом и магнетизм) - свойство веществ во внешнем магнитном поле намагничиваться в направлении этого поля, поэтому внутри парамагнетика к действию внешнего поля прибавляется действие наведенного внутреннего поля.

Парамагнетиками называются вещества, атомы которых имеют, в отсутствие внешнего магнитного поля, отличный от нуля магнитный момент .

Эти вещества намагничиваются в направлении вектора .

К парамагнетикам относятся многие щелочные металлы, кислород , оксид азота NO, хлорное железо и др.

46 Вектор намагничивания — магнитный момент элементарного объёма, используемый для описания магнитного состояния вещества. По отношению к направлению вектора магнитного поляразличают продольную намагниченность и поперечную намагниченность. Поперечная намагниченность достигает значительных величин в анизотропных магнетиках, и близка к нулю в изотропных магнетиках. Поэтому, в последних возможно выразить вектор намагничивания через напряжённость магнитного поля и коэффициент {\displaystyle \chi } названный магнитной восприимчивостью:

{\displaystyle {\vec {I}}=\chi {\vec {H}}} Вектор намагниченности ("намагничения")

Если вещество помещено во внешнее магнитное поле, то в атомах или молекулах
этого вещества появляются токи связанных зарядов (плотность которых обозначим через
Jin)
.

Таким образом в атомах возникают магнитные моменты от Jin.

В результате, в веществе возникает суммарный магнитный момент или намагниченность. Для описания свойств намагниченности можно ввести понятие
магнитного момента единицы объема M по
следующему определению:

где =

1. M — вектор намагниченности

2. m - вектор магнитного момента;

3. V — объём, занимаемый веществом

47 Напряженность магнитного поля необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах. Напряженность магнитного поля характеризует магнитное поле в вакууме.

Напряженность магнитного поля (формула) векторная физическая величина, равная:

Понравился материал? расскажи друзьям о сайте физика.

Напряженность магнитного поля в СИ - ампер на метр (А/м).

Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Если знать Напряженность магнитного поля в данной точке, то можно определить индукцию поля в этой точке.

Напряженность магнитного поля зависит только от силы тока, протекающего по проводнику, и его геометрии.

48

 

50 Ток смещения (электродинамика) — величина, пропорциональная скорости изменения индукции электрического поля. Ток смещения (радиоэлектроника) — постоянный анодный (коллекторный) ток, протекающий, когда к управляющему электроду приложено напряжение смещения.

51 Колебательным контуром называется замкнутая электрическая цепь, состоящая из последовательно соединённых катушки индуктивности, конденсатора ёмкости и электрического сопротивления.

52 Период колебательного контура (формула Томсона)

T - период
L - индуктивность
C - электрическая ёмкость

53 Сила тока в колебательном контуре и напряжение в конденсаторе

(10)

(11)

Где , - соответственно амплитуды силы тока и напряжения. Из выражений (8) и (10) вытекает, что колебания тока опережают по фазе колебания заряда на , т.е. при достижении током максимального значения, заряд ((а также и напряжение (см.(11)) обращается в нуль, и наоборот.

55 Цепь, состоящую из последовательно включенных резистора, катушки индуктивности и конденсатора (рис. 8, а), подключим к генератору переменного напряжения, позволяющему регулировать частоту колебаний (предполагается, что генератор напряжения обладает бесконечно малым внутренним сопротивлением и поэтому напряжение на его зажимах практически не зависит от нагрузки). На постоянном токе (нулевая частота) и очень низких частотах ток в цепи практически отсутствует, так как емкостное сопротивление конденсатора велико. Ток будет стремиться к нулю и на очень высоких частотах из-за возрастания индуктивного сопротивления катушки (см. графики на рис. 6,а).

Рис. 8

Но есть одна характерная частота, на которой ток в цепи максимален и равен U/R. На этой частоте индуктивное сопротивление равно емкостному, а поскольку у них разные знаки, они компенсируют друг друга и полное сопротивление цепи оказывается активным и равным R. Эта частота называется резонансной, а график зависимости тока в цепи от частоты — резонансной кривой (рис. 8,б). Значение резонансной частоты можно найти, приравняв индуктивное и емкостное сопротивления: pL = 1/ рС, следовательно, р2 = 1/LC (резонансная частота). Не забывайте, что угловая, или круговая частота в 2 или в 6,28 раза больше обычной, циклической частоты f, измеряемой в герцах, т.е. = 2 f.
Теперь мы вплотную подошли к понятию добротности, имеющему в радиотехнике очень важное значение. Чем меньше активное сопротивление R цепи, показанной на рис. 8,а, тем острее и выше резонансная кривая и тем больше ток в цепи при резонансе. На самом деле важно не само по себе активное сопротивление R, а отношение реактивного сопротивления r катушки или конденсатора на резонансной частоте р (напомним, что они равны) к активному R. Это отношение называется добротностью колебательного контура: Q = r/R = pL/R = 1/ pCR (добротность контура). Аналогично тому, как мы это сделали для резонансной частоты, можно подсчитать, что r2 = L/C.
Если нужно получить особенно высокую добротность, резистор R в контур, как правило, не устанавливают, а его роль выполняет активное сопротивление провода катушки. Даже у небольших радиочастотных катушек оно составляет единицы, а иногда и десятки ом, поскольку сопротивление провода на высокой частоте больше, чем на постоянном токе. Объясняется это так называемым скин-эффектом, явлением вытеснения тока к поверхности провода. Так, например, в медном проводе на частоте 3 МГц (3 миллиона колебаний в секунду) ток течет в поверхностном слое толщиной не более 0,1 мм.
Для уменьшения активного сопротивления катушек на радиочастотах часто используют многожильный обмоточный провод (литцендрат), скрученный из нескольких (7—21 и более) тонких изолированных проводников. При той же общей площади сечения или общем диаметре провода поверхность у литцендрата (по которой и текут высокочастотные токи) получается значительно больше, а сопротивление меньше, чем у одножильного провода.
Толщина скин-слоя обратно пропорциональна корню квадратному из частоты, и на частоте 300 МГц она уменьшается до 10 мкм. Здесь и литцендрат уже не помогает, и приходится опять использовать одножильные провода значительного диаметра, благо на таких частотах катушки имеют не более нескольких витков. Окисленные и "шершавые", т.е. плохо обработанные металлические поверхности будут на этих частотах уже плохими проводниками. Для улучшения проводимости поверхностного слоя его часто серебрят, а вместо сплошных круглых проводов используют тонкостенные трубки — и легче, и материал экономится. А сопротивление остается тем же.
Если выводы цепи рис. 8,а замкнуть накоротко, получится параллельный колебательный контур (рис. 8,в). Он гораздо чаще используется в радиотехнике. Чтобы наблюдать в контуре резонансные явления, к его выводам надо подключить уже не генератор переменного напряжения, а генератор тока, обладающий большим внутренним сопротивлением и поэтому создающий в любой нагрузке ток I, не зависящий от ее сопротивления.
Генератором тока является, например, короткая (по сравнению с длиной волны) антенна или транзисторный усилительный каскад. В этом случае напряжение на выводах параллельного контура будет изменяться, при изменении частоты, в соответствии с резонансной кривой, показанной на рис. 8,б штриховой линией. Как видим, она мало отличается от резонансной кривой для последовательного контура, причем отличия заметны лишь на боковых ветвях, вдали от резонансной частоты.
Напряжение на выводах контура при резонансной частоте равно IRое, где Roe = r2/R — эквивалентное сопротивление контура на резонансной частоте. Оно тем больше, чем меньше активное сопротивление, включенное последовательно с катушкой, или сопротивление самой катушки. Остается в силе все то, что мы рассказали о контурах с высокой добротностью и о мерах уменьшения сопротивления проводов на высокой частоте.
Для чего же нужен колебательный контур? Главным образом, для выделения колебаний с нужной нам частотой из множества колебаний с различными частотами. Это чуть ли не основная задача радиотехники. Даже простейший детекторный радиоприемник будет принимать сигналы сразу нескольких наиболее мощных радиостанций, работающих на разных частотах, если его не оснастить колебательным контуром.
Когда контур настроен на частоту нужной радиостанции, сигналы всех остальных значительно ослабляются, и мы прослушиваем только одну радиопередачу. Чтобы перестраивать контур по частоте, необходимо изменять индуктивность катушки L или емкость конденсатора С (или и то и другое одновременно). С увеличением индуктивности и емкости резонансная частота или частота настройки понижается. Чаще всего используют конденсатор переменной емкости промышленного изготовления и катушку с отводами: переключая отводы, выбирают диапазон частот, а внутри диапазона частоту устанавливают конденсатором.
Итак, незаметно от рассказа об электротехнике мы перешли к радиотехнике. Но о ней — в следующий При Р. в электрич. цепях реактивная часть комплексного импеданса обращается в нуль. При этом в после-доват. цепи падения напряжения на катушке индуктивности и на конденсаторе имеют амплитуду QE 0. Однако они складываются в противофазе и взаимно компенсируют друг друга. В параллельной цепи (рис. 1, б)при Р. происходит взаимная компенсация токов в ёмкостной и индуктивной ветвях. В отличие от последоват. Р., при к-ром внеш. силовое воздействие осуществляется источником напряжения, в параллельном контуре резонансные явления реализуются только в том случае, когда внеш. воздействие задаётся источником тока. Соответственно Р. в последоват. контуре называют Р. напряжений, а в параллельном контуре - Р. токов. Если в параллельный контур вместо генератора тока включить генератор напряжения, то на резонансной частоте будут выполняться условия не максимума, а минимума тока, поскольку вследствие компенсации токов в ветвях, содержащих реактивные элементы, проводимость цепи оказывается минимальной (явление антирезонанса).

56 Переме́нный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

57 Определение: Сопротивление называется активным, если энергия электрического тока преобразуется в виде теплоты.

Активное сопротивление часто называют омическим. Определение: Индуктивное сопротивление - это сопротивление, возникающее в результате явления электромагнитной индукции.

В проводнике с переменным током возникает ЭДС индукционного тока, на образование которого расходуется энергия электрического тока.

Индуктивное сопротивление обозначается

Где ω - циклическая частота тока,

L - индуктивность.

Определение: Емкостное сопротивление - это сопротивление, которое возникает в результате явления магнитоэлектрической индукции (второе уравнение Максвелла), в результате которой возникает ток смещения, на образование которой расходуется энергия электрического тока.

58 Закон ома для переменного тока в общем случае имеет такой же вид, как и для постоянного. То есть при увеличении напряжения в цепи ток также в ней будет увеличиваться. Отличием же является то, что в цепи переменного тока сопротивление ему оказывают такие элементы как катушка индуктивности и емкость. Учитывая этот факт, запишем закон ома для переменного тока.




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 275; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.