КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формализованное понятие алгоритма
Представление чисел в ЭВМ Системы счисления Под системой счисления подразумевается набор правил наименования и записи чисел. Различают позиционные и непозиционные системы счисления. Система счисления называется позиционной, если значение цифры числа зависит от местоположения цифры в числе. В противном случае она называется непозиционной. Значение числа определяется по положению этих цифр в числе. 32-разрядные процессоры могут работать с оперативной памятью емкостью до 232-1, а адреса могут записываться в диапазоне 00000000 – FFFFFFFF. Однако в реальном режиме процессор работает с памятью до 220-1, а адреса попадают в диапазон 00000 – FFFFF. Байты памяти могут объединяться в поля как фиксированной, так и переменной длины. Словом называется поле фиксированной длины, состоящее из 2 байтов, двойным словом – поле из 4 байтов. Адреса полей бывают четные и нечетные, при этом для четных адресов операции выполняются быстрее. Числа с фиксированной точкой в ЭВМ представляются как целые двоичные числа, и занимаемый ими объем может составлять 1, 2 или 4 байта. Целые двоичные числа представляются в дополнительном коде, соответственно числа с фиксированной точкой представляются в дополнительном коде. При этом если число занимает 2 байта, то структура числа записывается по следующему правилу: старший разряд отводится под знак числа, а остальные – под двоичные цифры числа. Дополнительный код положительного числа равен самому числу, а дополнительный код отрицательного числа может быть получен по такой формуле: х = 10и – \х\, где n – разрядность числа. В двоичной системе счисления дополнительный код получается путем инверсии разрядов, т. е., заменой единиц нулями и наоборот, и прибавлением единицы к младшему разряду. Количество битов мантиссы определяет точность представления чисел, количество битов машинного порядка определяет диапазон представления чисел с плавающей точкой. Алгоритм может существовать только тогда, когда в то же самое время существует некоторый математический объект. Формализованное понятие алгоритма связано с понятием рекурсивных функций, нормальных алгоритмов Маркова, машин Тьюринга. В математике функция называется однозначной, если для любого набора аргументов существует закон, по которому определяется единственное значение функции. В качестве такого закона может выступать алгоритм; в этом случае функция называется вычислимой. Рекурсивные функции – это подкласс вычислимых функций, а алгоритмы, определяющие вычисления, называются сопутствующими алгоритмами рекурсивных функций. Сначала фиксируются базовые рекурсивные функции, для которых сопутствующий алгоритм тривиален, однозначен; затем вводятся три правила – операторы подстановки, рекурсии и минимизации, при помощи которых на основе базовых функций получаются более сложные рекурсивные функции. Базовыми функциями и их сопутствующими алгоритмами могут выступать: 1) функция n независимых переменных, тождественно равная нулю. Тогда, если знаком функции является φn, то независимо от количества аргументов значение функции следует положить равным нулю; 2) тождественная функция n независимых переменных вида ψni. Тогда, если знаком функции является ψni, то значением функции следует взять значение i-го аргумента, считая слева направо; 3) Λ – функция одного независимого аргумента. Тогда, если знаком функции является λ, то значением функции следует взять значение, следующее за значением аргумента. Разные ученые предлагали свои подходы к формализованному представлению алгоритма. Например, американский ученый Черч предположил, что класс вычислимых функций исчерпывается рекурсивными функциями и, как следствие, каким бы ни был алгоритм, перерабатывающий один набор целых неотрицательных чисел в другой, найдется алгоритм, сопутствующий рекурсивной функции, эквивалентный данному. Следовательно, если для решения некоторой поставленной задачи нельзя построить рекурсивную функцию, то и не существует алгоритма для ее решения. Другой ученый, Тьюринг, разработал виртуальную ЭВМ, которая перерабатывала входную последовательность символов в выходную. В связи с этим им был выдвинут тезис, что любая вычислимая функция вычислима по Тьюрингу.
Дата добавления: 2017-01-14; Просмотров: 172; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |