Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биогеохимические циклы наиболее жизненно важных биогенных веществ: углерода, азота, кислорода, фосфора и серы




 

Рассмотрим наиболее жизненно важные вещества, из которых в основном состоят белковые молекулы. К ним относятся углерод, азот, кислород, фосфор, сера.

Биогеохимические циклы углерода, азота и кислорода наиболее совершенны. Благодаря большим атмосферным резервам, они способны к быстрой саморегуляции. В круговороте углерода, а точнее − наиболее подвижной его формы − СО , четко прослеживается трофическая цепь: продуценты, улавливающие углерод из атмосферы при фотосинтезе, консументы − поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуценты − возвращающие углерод вновь в круговорот. Скорость оборота СО составляет порядка 300 лет (полная его замена в атмосфере).

В Мировом океане трофическая цепь, осуществляемая продуцентами (фитоплактон), консументами (зоопланктон, рыбы), редуцентами (микроорганизмы), осложняется тем, что некоторая часть углерода мертвого организма, опускаясь на дно, попадает в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте вещества.

Круговорот углерода в гидросфере более сложен, чем на суше. Дело в том, что образование углекислого газа регулируется поступлением кислорода в верхние слои воды из атмосферы и глубинных слоев. Почти весь этот углерод возвращается при дыхании и разложении органических останков в водную среду (26 млрд. т) в виде карбонатов. Ещё 1.5 млрд. т попадает в донные карбонатные отложения. Морская вода имеет практически постоянное значение рН 8.1+0.2 (Мировой океан, по терминологии замечательного химика ХХ в. Л.Г. Силена − это даже не рН-буферная система, а «рН-стат»). При таком рН углерод находится в виде гидрокарбонат-аниона. Поэтому не удивительно, что углекислый газ из атмосферы растворяется в воде, переходя в солевую форму, а обратный процесс − поступление углекислого газа из океана в атмосферу практически не происходит. Содержание углерода (в пересчете на углекислый газ) в океане более, чем в 50 раз превышает его содержание в атмосфере. Круговороты углерода в Мировом океане и на суше связаны между собой, причём преобладает вынос этого элемента с суши в океан.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот этого элемента приводит к возрастанию содержания СО в атмосфере.

Сформировавшийся десятки миллионов лет назад круговорот углерода поддерживал постоянный уровень содержания углекислого газа в атмосфере благодаря наличию двух факторов: устойчивости фотосинтеза в лесах «зеленого пояса» Земли (джунгли Амазонии, сибирская тайга) и карбонатной системы Мирового океана. Деятельность человека приводит к увеличению выбросов углекислого газа в атмосферу с выхлопами и промышленными газами, уменьшению лесов − важнейших накопителей углерода. Начиная с 1958г., когда были начаты систематические измерения, содержание СО выросло на 10%. При сохранении скорости этого процесса уже в середине ХХI века содержание СО в атмосфере удвоится, что приведет к парниковому эффекту, а это вызовет глобальное потепление на Земле (в среднем на 1.5-4.5º С), причем наибольшее влияние испытывают области у полюсов Земли (там повышение температуры по некоторым прогнозам достигнет 10º С).

Это, в свою очередь, чревато глобальными изменениями климата (во влажных районах количество осадков станет ещё больше; районам степей и лесостепей, таким, как территория Украины, грозит опустынивание) и затоплением прибрежных районов. Эти эффекты могут иметь лавинообразный взаимно усиливающий (синергический) характер: чем больше СО в атмосфере, тем выше температура, тем меньше связывание углекислого газа и т.д. Этот вопрос очень серьезно обсуждают многие ответственные ученые. Вместе с тем, далеко не все специалисты столь пессимистически оценивают будущее индустриальной цивилизации. Эти ученые отмечают, что для большинства растений интенсивность фотосинтеза с ростом содержания СО увеличивается, и этот эффект может привести к стабилизации содержания углекислого газа в атмосфере, хотя и на уровне, превышающем нынешний.

Скорость круговорота кислорода − 2 тыс. лет, именно за это время весь кислород атмосферы проходит через живое вещество. Основной поставщик кислорода на Земле − зеленые растения.

Главный потребитель кислорода − животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.

Подсчитано, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который освобождается в процессе фотосинтеза.

Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от её объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.

Опасность заключается также и в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям.

Азот возвращается в атмосферу вновь с выделенными при гниении газами.

Определенная часть азота поступает в гидросферу и атмосферу в виде аммиака в результате вулканической деятельности (около 5 млн. т).

Благодаря деятельности редуцентов около 80% азота, усваиваемого в течение года организмами в масштабе биосферы, не покидает круговорот. Лишь 20 % азота, усваиваемого организмами, − это результат процессов биологической и атмосферной фиксации. Поиному обстоит дело с азотом, фиксированным промышленным путем. Практически весь он переводится в удобрения. Из азота, поступившего на поля в виде удобрений, крайне малая часть используется повторно, тогда как основная часть теряется с собранным урожаем, а также в результате вымывания из почвы осадками (выщелачивания).

Круговорот азота все больше подвергается влиянию антропогенного загрязнения воздуха. Попадающие в атмосферу с промышленными выбросами оксиды N O и NO не характерны для естественного круговорота, являясь лишь короткоживущими промежуточными продуктами. Содержание этих оксидов в воздухе промышленных регионов за последние десятилетия выросло многократно. Поскольку оксиды азота при дальнейшем окислении образуют азотную кислоту, увеличение их содержания в атмосфере ведет к учащению кислотных осадков. Кроме того, под действием ультрафиолетового солнечного излучения диоксид азота реагирует с продуктами неполного сгорания углеводородов, вызывая образование фотохимического смога. Наконец, оксиды азота раздражающе действуют на органы дыхания человека и животных.

Биогеохимический круговорот в биосфере, помимо кислорода, углерода и азота, совершают и многие другие элементы, входящие в состав органических веществ, − сера, фосфор, железо и др.

Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.

Круговорот серы и фосфора − типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала − апатита.

Общий круговорот фосфора можно разделить на две части − водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи морским птицам. Их экскременты (гуано) снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море.

Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть фосфора из скелетов рыб попадает в осадочные породы.

В наземных экосистемах фосфор извлекают растения из почв и далее он распространяется по трофической сети. Возвращается фосфор в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов, их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно.

Последнее обстоятельство может привести к истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.).

Сера также имеет основной резервный фонд в отложениях и в почве, но в отличие от фосфора имеет резервный фонд и в атмосфере. В обменном фонде главная роль принадлежит микроорганизмам. Одни из них восстановители, другие − окислители.

В горных породах сера встречается в виде сульфидов (FeS и др.), в растворах − в форме иона, в газообразной фазе в виде сероводорода (H S) или сернистого газа (SO ). В некоторых организмах сера накапливается в чистом виде (S), и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают её до H S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы − так продолжается круговорот.

Однако круговорот серы, так же как и азота, может быть нарушен вмешательством человека. Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (SO ) нарушает процессы фотосинтеза и приводит к гибели растительности.

Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть, в частности, направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Всеобщий гомеостаз биосферы зависит от стабильности биогеохимического круговорота веществ в природе. Первоочередное значение для её гомеостаза имеют целостность и устойчивость природных экосистем.

 




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 1274; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.