КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Алгебраические фильтры
Фильтрация Усреднение Считывание сигнала Стандартные способы получения воспроизводимой конфигурации ССП Общая характеристика сигнала МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ РЕГИСТРАЦИИ И ОБРАБОТКИ ССП ССП выделяют при помощи специальных методов из ЭЭГ. Частотный диапазон ССП включает полосу от 0 Гц до 3 кГц и ограничен, с одной стороны, сверхмедленной электрической активностью мозга [Илюхина, 1977], а с другой – спайковой активностью нейронов. Кроме ритмических колебаний на низкочастотном («ноль-частотном») краю этого диапазона выделяют такие электрические феномены, как постоянный потенциал (DC-potential) и сдвиги постоянного потенциала (DC-shifts, DC-fluctuations). Суммарная активность в полосе частот, превышающих 300 Гц, остается мало изученной [Думенко, 1979]. Методические требования к регистрации ЭЭГ (установка электродов, выбор системы отведения, полосы пропускания усилителей, способы устранения артефактов) описаны в главе 2. Заметим, что для регистрации ССП разных типов применяют разные частотные полосы (например, для ранних компонентов ВП и УНВ, см. параграф 3). Поскольку анализ ССП включает рассмотрение их конфигурации, амплитудно-временных характеристик и топографии, применение монополярного отведения предоставляет возможность оценить отклонения этих параметров от некоторого единого стандарта. Это обстоятельство делает очевидными преимущества монополярной системы отведения для исследования ССП. Для компьютерной обработки сигнала «сырая» ЭЭГ переводится в цифровую форму. Частота считывания мгновенных значений сигнала при этой процедуре («квантование», sampling) определяется согласно теореме Шеннона–Котельникова. Для того чтобы описать сигнал частоты F, частота считывания должна быть не меньше 2 F, т.е. для того, чтобы описать, например, частоту колебаний 100 Гц, необходимо применить частоту считывания сигнала не менее 200 Гц. В основе выделения ССП из сигнала ЭЭГ лежат следующие допущения: 1. в ситуации многократного повторения события регистрируемый сигнал ЭЭГ (SUMi (t)) является суммой двух компонентов: спонтанной ЭЭГ S i(t) и потенциала, связанного с событием P i (t); 2. компонент S i (t) распределен случайно для ряда последовательных повторений события; 3. компонент P i (t) постоянен для всех повторений события, т.е. сигнал при i -м повторении события в момент t представляет сумму: . При суммировании N сигналов, зарегистрированных при последовательных повторениях события, компонент P i(t) будет устойчив, a S i(t), как ошибка среднего значения, изменяется пропорционально величине 1/ N. Это означает, что, например, при исходном соотношении сигнала и шума 1:1, при суммировании 25 реализаций ЭЭГ в полученном ССП отношение сигнал/шум будет 1: 5, а при 100 реализациях – 1: 10. Для разных типов потенциалов применяют разное количество накоплений: например, для УНВ и Р 300 достаточно 30–50 реализаций, а для потенциалов ствола мозга требуется от 4000 до 7000 реализаций (Hughes, 1985). В качестве мгновенных значений накопленного ССП могут быть использованы не средние, а медианы [Rockstroh et al., 1982]. Медиана, в отличие от среднего, обладает свойством робастности, т.е. в значительно меньшей степени чувствительна к отклонениям выборки от нормального распределения. Хотя различия между средним и медианой уменьшаются по мере увеличения количества суммируемых реализаций и «медианные» кривые менее гладкие, чем усредненные, тем не менее, предпочтительно использование медианы, если артефакты (такие, как моргания) не могут быть устранены. При малом количестве реализаций следует предпочесть медиану или даже единичную реализацию. Случайная, «шумовая» составляющая единичной реализации ССП («сырой» ЭЭГ) может быть устранена посредством сглаживания. Суть данной процедуры состоит в скольжении «окном», которое представляет собой набор из п коэффициентов (где n – нечетное произвольное число, например, для п = 5 окно «0,5; 1,0; 2,0; 1,0; 0,5») по последовательности мгновенных значений сигнала, так что каждое значение в последовательности умножается на поставленный в соответствие ему коэффициент фильтра. Затем исходное значение сигнала, соответствующее «центральному» коэффициенту окна-фильтра, заменяется частным от деления суммы вычисленных произведений на сумму коэффициентов фильтра. После этого фильтр смещается на одно значение сигнала, и процедура повторяется, так что все исходные значения сигнала кроме (n–1)/2 мгновенных значений, примыкающих к границам эпохи анализа (эти значения должны быть исключены из дальнейшего анализа), заменяются на новые вычисленные значения. Очевидно, что свойства фильтра определяются количеством коэффициентов и их соотношением. Например, окно «1, 1, 1, 1, 1, 1, 1» сглаживает сигнал сильнее, чем «1, 5, 10, 15, 10, 5, 1», a «1, 1, 1, 1, 1, 1, 1, 1, 1» – еще сильнее.
Дата добавления: 2017-01-14; Просмотров: 151; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |