КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гликогенолиз
Метаболизм гликогена Гликоген представляет собой разветвленный полисахарид, мономером которого служит глюкоза. Остатки глюкозы соединены в линейных участках α-1,4-гликозидными связями, а в местах разветвления - α-1,6-гликозидными связями. Молекула гликогена более разветвлена, чем крахмал, точки ветвления встречаются через каждые 8-10 остатков глюкозы. Гликоген – основной резервный полисахарид в клетках животных. Гликоген плохо растворим в воде и не влияет на осмотическое давление в клетке, поэтому в клетке депонируется гликоген, а не свободная глюкоза. Гликоген депонируется главным образом в печени и скелетных мышцах, запасаясь в цитозоле клеток в форме гранул. С гранулами связаны и ферменты, участвующие в обмене гликогена. Синтез и распад гликогена протекают разными метаболическими путями.
Мобилизация гликогена происходит в основном в период между приемами пищи и ускоряется во время физической работы. Этот процесс происходит в результате действия ключевого фермента гликогенолиза гликогенфосфорилазы, которая катализирует реакцию: (глюкоза)n + Н3РО4 ¾® (глюкоза)n-1 + глюкозо-1-фосфат Реакция практически необратима. Поскольку в результате реакции глюкоза образуется в фосфорилированной форме, данный процесс распада гликогена называется фосфоролитическим. Гликогенфосфорилаза катализирует расщепление только концевых a-1,4-гликозидных связей в боковых цепях гликогена. Поскольку участки разветвления гликогена для гликогенфосфорилазы не доступны (она не действует на a-1,6-гликозидные связи), на полисахарид в этом случае действует другой фермент – a-1,6-гликозидаза, катализируя гидролитическое расщепление a-1,6-связи в точке ветвления с образованием одной молекулы D-глюкозы и открывая для действия гликогенфосфорилазы новый участок цепи гликогена. Образовавшийся под действием гликогенфосфорилазы глюкозо-1-фосфат превращается в глюкозо-6-фосфат (метаболит гликолиза) под действием фермента фосфоглюкомутазы. Распад гликогена в печени и мышцах имеет одну различающую их реакцию, обусловленную наличием в печени фермента глюкозо-6-фосфатазы. Присутствие в печени этого фермента обусловливает главную функцию гликогена печени – освобождение глюкозы в кровь в период между приемами пищи. Т.о. мобилизация гликогена печени обеспечивает поддержание уровня глюкозы в крови на постоянном уровне. Через 10-18 ч после приема пищи запасы гликогена в печени значительно истощаются, а голодание в течение 24 ч приводит к полному его исчезновению. Функция мышечного гликогена заключается в высвобождении глюкозо-6-фосфата, используемого в самой мышце для окисления и получения энергии. Синтез гликогена
Гликоген синтезируется практически во всех тканях, особенно активно в печени и скелетных мышцах. Синтез происходит в период пищеварения, спустя 1-2 ч после приема углеводной пищи. Синтез гликогена требует энергии. При включении одного мономера в полисахаридную цепь протекают 2 реакции, сопряженные с расходованием АТФ и УТФ.
Перенос глюкозильных групп от УДФ-глюкозы на нередуцирующий конец разветвленной молекулы гликогена катализируется ферментом гликогенсинтазой. При этом образуется новая a-1,4-гликозидная связь. Образование a-1,6-связей, находящихся в точках ветвления цепей гликогена, гликогенсинтаза не способна. Эти связи образует специальный «ветвящий» фермент путем переноса коротких фрагментов (из 6-7 остатков глюкозы) с одного участка гликогена на другой с образованием a-1,6-гликозидных связей. Таким образом, наращивание молекулы гликогена осуществляется путем чередования действия этих двух ферментов.
Регуляция депонирования и мобилизации гликогена
Переключение процессов синтеза и мобилизации гликогена в печени происходит при переходе состояния пищеварения в постабсорбтивный период или состояния покоя на режим мышечной работы. В переключении этих метаболических путей в печени участвуют гормоны инсулин, глюкагон и адреналин, а в мышцах – инсулин и адреналин. Влияние этих гормонов на синтез и распад гликогена реализуется на уровне ключевых ферментов - гликогенсинтазы и гликогенфосфорилазы – и осуществляется путем их фосфорилирования и дефосфорилирования.
Первичным сигналом для синтеза инсулина и глюкагона является изменение концентрации глюкозы в крови. Инсулин и глюкагон постоянно присутствуют в крови, но при переходе из абсорбтивного состояния в постабсорбтивное изменяется их относительная концентрация – инсулин-глюкагоновый индекс (ИГИ). Т.о., главным переключающим фактором в печени является инсулин ИГИ. В постабсорбтивном периоде ИГИ снижается и решающим фактором является влияние глюкагона, который стимулирует распад гликогена в печени. Механизм действия глюкагона включает каскад реакций, приводящий к активации гликогенфосфорилазы:
аденилатциклаза (неакт) гормон® ¯ АТФ аденилатциклаза (акт) ® ¯ ПК А (неакт) цАМФ® ¯ киназа фосфорилазы (неакт) ПК А (акт)® ¯ фосфорилаза В киназа фосфорилазы (акт)® ¯ гликоген фосфорилаза А→ ↓ глюкозо-1-Ф
В период пищеварения преобладающим является влияние инсулина, т.к. ИГИ в этом случае повышается. Под влиянием инсулина происходит: а) стимуляция транспорта глюкозы в клетки мышечной ткани. б) изменение количества некоторых ферментов путем индукции и репрессии их синтеза. Например, инсулин индуцирует синтез глюкокиназы, ускоряя тем самым фосфорилирование глюкозы в печени. в) изменение активности ферментов путем фосфорилирования и дефосфорилирования. Инсулин снижает содержание цАМФ в клетке (а значит и цАМФ-зависимое фосфорилирование) путем активации фосфодиэстеразы – фермента, гидролизующего цАМФ, с одной стороны. С другой стороны, он активирует фосфатазу гликогенсинтазы. Последняя дефосфорилируется и переходит в активное состояние.
Дата добавления: 2015-07-13; Просмотров: 2607; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |