Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Часть 1. Анализ Рисков 2 страница




Другое упрощение состоит в том, что в большинстве случаев мы не сделаем себе хуже, если переоценим вероятность некой глобальной катастрофы. Это значит, что нам надо брать в большинстве случаев верхнюю границу вероятностей. Но этот подход не работает, если нужно выбрать один из двух путей, каждый из которых имеет свой риск. В этом случае излишнее завышение риска может привести к тому, что мы фактически выберем более рискованный путь. Скажем, отказавшись от адронного коллайдера, мы можем не открыть новые источники энергии, которые нам позволили бы летать к звёздам, и не сможем резко повысить таким образом выживаемость нашей цивилизации за счёт более широкого ее распространения. Мы можем оценить среднее влияние когнитивных искажений в оценке вероятности исторических проектов (от аварий челнока до проектов построить коммунизм к 1980 году). Из исследований психологии известно, что люди, даже пытаясь учитывать свою будущую ошибку, всё равно обычно недооценивают искомый параметр [Yudkowsky 2008b].

В нашей методологии (часть 2) мы рассмотрим список из примерно 150 возможных логических ошибок и когнитивных искажений, которые так или иначе могут изменить оценку рисков. Даже если вклад каждой ошибки составит не более одного процента, результат может отличаться от правильного в разы и даже на порядки. Когда люди предпринимают что-то впервые, они обычно недооценивают рискованность проекта в 40-100 раз, что видно на примере Чернобыля и Челленджера. (А именно, челнок был рассчитан на одну аварию на 1000 полётов, но первый раз разбился уже на 25-ом полёте, что, как подчёркивает Юдковски, говорит о том, что оценка безопасности в 1 к 25 была бы более правильной, что в 40 раз меньше исходной оценки; реакторы строились с расчетом одна авария на миллион лет, но первая масштабная авария произошла через примерно 10 000 станций-лет эксплуатации, то есть, оценка безопасности в 100 раз более низкая была бы более точной.) Е. Юдковски в своей основополагающей статье «Систематические ошибки в рассуждениях, влияющие на оценку глобальных рисков» [Yudkowsky 2008b] приводит анализ достоверности высказываний экспертов о разнообразных величинах, которые они не могут вычислить точно, и о том, какие интервалы 99 %-ой уверенности они дают для этих величин. Результаты этих экспериментов удручают. Позволю себе большую цитату:

«Допустим, я попрошу вас сделать наилучшее возможное предположение насчёт неизвестного числа, такого, как количество «Врачей и хирургов» в бостонской телефонной книге, или о суммарной продукции яиц в США в миллионах штук. Вы дадите в ответ некую величину, которая наверняка не будет совершенно точной; подлинная величина будет больше или меньше, чем вы предположили. Затем я попрошу вас назвать нижнюю границу этого показателя, когда вы уверенны на 99 %, что подлинная величина лежит выше этой границы, и верхнюю границу, по отношению к которой вы на 99 % уверены, что искомая величина лежит ниже неё. Эти две границы образуют ваш интервал 98 %-й уверенности. Если вы хорошо откалиброваны, то на 100 подобных вопросов у вас будет только примерно 2 выпадения за границы интервала.

Альперт и Раиффа задали испытуемым 1000 вопросов по общеизвестным темам, подобных приведённым выше. Оказалось, что 426 подлинных значений лежали за пределами 98 %-ых интервалов уверенности, данных испытуемыми. Если бы испытуемые были правильно настроены, было бы только 20 сюрпризов. Иными словами, события, которым испытуемые приписывали вероятность 2 %, случались в 42.6 % случаев.

Другую группу из 35 испытуемых попросили оценить 99,9 %-е верхние и нижние границы уверенности. Они оказались неправы в 40 % случаев. Другие 35 субъектов были опрошены о максимальных и минимальных значениях некого параметра и ошиблись в 47 % случаев. Наконец, четвёртая группа из 35 субъектов должна была указать «невероятно малое» и «невероятно большое» значение параметра; они ошиблись в 38 % случаев.

Во втором эксперименте новой группе испытуемых был предоставлен первый набор вопросов вместе с ответами, рейтингом оценок, с рассказом о результатах экспериментов и разъяснением концепции калибровки – и затем их попросили дать 98 %-е интервалы уверенности для новой группы вопросов. Прошедшие подготовку субъекты ошиблись в 19 % случаях, что являет собой значительное улучшение их результата в 34 % до подготовки, но всё ещё весьма далеко от хорошо откалиброванного результата в 2 %.

Подобные уровни ошибок были обнаружены и у экспертов. Хинес и Ванмарк опросили семь всемирно известных геотехников на предмет высоты дамбы, которая вызовет разрушение фундамента из глинистых пород, и попросили оценить интервал 50 %-й уверенности вокруг этой оценки. Оказалось, что ни один из предложенных интервалов не включал в себя правильную высоту. Кристиен-Салански и Бушихед опросили группу врачей на предмет вероятности пневмонии у 1531 пациента с кашлем. В наиболее точно указанном интервале уверенности с заявленной достоверностью в 88 %, доля пациентов, действительно имевших пневмонию, была менее 20 %.

Лихтенштейн производит обзор 14 исследований на основании 34 экспериментов, выполненных 23 исследователями, изучавшими особенности оценки достоверности собственных выводов людьми. Из них следовал мощнейший вывод о том, что люди всегда сверхуверены. В современных исследованиях на сверхуверенность уже не обращают внимания; но она продолжает попутно проявляться почти в каждом эксперименте, где субъектам позволяется давать оценки максимальных вероятностей.

Сверхуверенность в большой мере проявляется в сфере планирования, где она известна как ошибочность планирования. Бюхлер попросил студентов-психологов предсказать важный параметр – время сдачи их дипломных работ. Исследователи подождали, когда студенты приблизились к концу своих годичных проектов и затем попросили их реалистично оценить, когда они сдадут свои работы, а также, когда они сдадут свои работы, если всё пойдёт «так плохо, как только может». В среднем, студентам потребовалось 55 дней, чтобы завершить свои дипломы, на 22 дня больше, чем они ожидали, и на 7 дней больше, чем они ожидали в самом худшем случае.

Бюхлер попросил студентов оценить время сдачи дипломных работ, в котором они уверены на 50 %, на 75 % и на 99 %. Только 13 % участников закончили свои дипломы к моменту, которому приписывали 50 % вероятность, только 19 % закончили к моменту 75 % оценки и 45 % закончили к 99 % уровню. Бюхлер пишет: «Результаты выхода на уровень 99 % достоверности особенно впечатляющи. Даже когда их попросили сделать наиболее консервативное предсказание, в отношении которого они чувствовали абсолютную уверенность, что его достигнут, всё равно уверенность студентов в их временных оценках намного превосходила их реальные результаты» [Yudkowsky 2008b].»

 

Наконец, очень важно различать погодовую и полную вероятность. Например, если вероятность вымирания от ядерной войны оценить в 1 процент в год, то за тысячу лет накопленная вероятность будет означать шансы выжить примерно 1 к 10 000. Вообще, любая погодовая вероятность может быть трансформирована в ожидаемое время, то есть время, за которое шансы дорастут до 50 процентов. Упрощённая формула для оценки ее есть T=72/P, где Т – время в годах, а Р – вероятность в процентах. (Точное решение уравнения 2=(1,01) равно x=log2/ log(1.01).)

Например, погодовой риск в 0,7 % даст 50 % вымирания цивилизации за 100 лет, 75 % за 200 и 99,9 % за 1000 лет.) Это означает, что любой риск, заданный на некотором промежутке времени, можно нормировать на «период полураспада», то есть время, на котором он бы означал 50 %-ую вероятность вымирания цивилизации.

Иначе говоря, вероятность вымирания за период времени [0; T] равна:

P(T) = 1 – 2 ,

Где Т – время полураспада. Тогда погодовая вероятность будет P(1) = 1 – 2 , Следующая таблица показывает соотношение этих параметров, вычисленное с помощью вышеприведенной формулы для разных начальных условий.

Таблица 1. Связь ожидаемого времени существования цивилизации с погодовой вероятностью вымирания.

T0 — период, за который глобальная катастрофа случится с вероятностью 50 %: P(1) — вероятность глобальной катастрофы в ближайший год, % P(100) — вероятность вымирания цивилизации за 100 лет (то есть к 2107г). % 1–P(100) — шансы выживания цивилизации за 100 лет: Период гарантированного вымирания с вероятностью 99,9 %, лет:
10 000 0.0069 % 0,7 % 99,3 % 100 000
1 600 0.0433 % 6 % 94 % 16 000
  0.173 %   12,5 % 87,5 % 4 000
  0.346 % 25 % 75 % 2 000
  0.691 % 50 % 50 % 1 000
  1,375 % 75 % 1 к 4  
  2,735 % 93,75 % 1 к 16  
12,5 5,394 % 99,6 % 1 к 256  
  10,910 % 99,9984 % 1 к 16 536  

 

Обратите внимание на нижнюю часть этой таблицы, где даже очень большое снижение шансов выживания за весь XXI век не изменяет в значительной мере «период полураспада» T0, который остаётся на уровне порядка 10 лет. Это означает, что даже если шансы пережить XXI век очень малы, всё равно у нас почти наверняка есть ещё несколько лет до «конца света». С другой стороны, если мы хотим пережить XXI век наверняка (сделать 1–P(100) как можно выше), нам надо приблизить погодовую вероятность вымирания P(1) практически к нулю.

Итак, мы предполагаем, что вероятность глобальных катастроф можно оценить, в лучшем случае, с точностью до порядка (причём, точность такой оценки будет плюс-минус порядок) и что такого уровня оценки достаточно, чтобы определить необходимость дальнейшего внимательного исследования и мониторинга проблемы[16]. Подобными примерами шкал являются Туринская и Палермская шкалы риска астероидной опасности.

Одиннадцатибальная (от 0 до 10) Туринская шкала астероидной опасности «характеризует степень потенциальной опасности, грозящей Земле со стороны астероида или ядра кометы. Балл по Туринской шкале астероидной опасности присваивается малому телу Солнечной системы в момент его открытия в зависимости от массы этого тела, возможной скорости и вероятности его столкновения с Землей. По мере дальнейшего исследования орбиты тела его балл по Туринской шкале может быть изменен» [Сурдин]. Ноль означает отсутствие угрозы, десять – вероятность более 99 % падения тела диаметром более 1 км. Палермская шкала отличается от Туринской тем, что учитывает также и время, оставшееся до падения астероида: чем времени меньше, тем выше балл. Балл по Палермской шкале вычисляется по специальной формуле [ NASA ].

Интересно было бы создать аналогичную шкалу для оценки рисков глобальных катастроф, ведущих к человеческому вымиранию. Поскольку результат любой катастрофы такого рода по определению один и тот же, то масштаб здесь учитывать не нужно. С другой стороны, принципиальное значение приобретает степень неопределённости нашего знания о риске и наша способность его предотвратить. Таким образом, шкала глобальных катастроф должна отражать три фактора: вероятность глобальной катастрофы, достоверность сведений о данном риске и вероятность того, что данный риск удастся предотвратить.

В силу сказанного кажется естественным предложить следующую вероятностную классификацию глобальных рисков в XXI веке (рассматривается вероятность на протяжении всего XXI века при условии, что никакие другие риски на неё не влияют):

1) Неизбежные события. Оценка их вероятности – порядка 100 % в течение XXI века. Интервал уверенности: (10 %; 100 %)

2) Весьма вероятные события – оценка вероятности порядка 10 %. (1 %; 100 %)

3) Вероятные события – оценка порядка 1 %. (0,1 %; 10 %)

4) Маловероятные события – оценка 0,1 %. (0,01 %; 1 %)

5) События с ничтожной вероятностью – оценка 0,01 % и меньше. (0 %; 0,1 %)

Пунктами 4 и 5, казалось бы, можно пренебречь, поскольку их суммарный вклад меньше, чем уровень ошибок в оценке первых трёх. Однако, ими пренебрегать не стоит, так как возможна значительная ошибка в оценке рисков. Далее, важно количество событий с малой вероятностью. Например, если возможны несколько десятков разных сценариев с вероятностью 0,1 % – 10 %, то в сумме это даёт разброс вероятности 1 % - 100 %. К неизбежным событиям относится только тот факт, что в течение XXI века мир существенно изменится.

В наших рассуждениях мы будем широко пользоваться «принципом предосторожности», то есть, мы будем предполагать, что события могут сложиться наихудшим реалистичным образом. При этом реалистичными мы будем считать следующие сценарии: а) не противоречащие законам физики; б) возможные при условии, что наука и техника будут развиваться с теми же параметрами ускорения, что и в настоящий момент. Принцип предосторожности соответствует указанной Юдковски и проверенной на многих экспериментах закономерности (см. выше цитату из него), что результат, который люди получают относительно будущего, обычно оказывается хуже их самых худших ожиданий [Yudkowsky 2008b]. При расширении вероятностных промежутков нам следует уделять внимание, в первую очередь, расширению в худшую сторону, то есть — в сторону увеличения вероятности и уменьшения оставшегося времени. Однако, если некий фактор, например, создание защитной системы, может нам помочь, то оценки времени его появления следует увеличивать. Иначе говоря, консервативной оценкой времени появления домашних конструкторов биовирусов будет 5 лет, а времени появления лекарства от рака – 100. Хотя, скорее всего, и то, и другое появится через пару десятков лет.

В экономике применяется следующий метод предсказания – опрос ведущих экспертов о будущем некого параметра и вычисление среднего. Очевидно, это не позволяет узнать действительное значение параметра, но позволяет сформировать «best guess» – наилучшее предположение. Тот же метод можно применить, с определённой осторожностью, и для оценки вероятности глобальных катастроф. Допустим, в отношении глобального потепления из тысяч экспертов только один говорит, что она наверняка приведёт к полному вымиранию человечества. Тогда применение этой методики даст оценку вероятности вымирания, равную 0,1 %.

В целом знание погодовой вероятности глобальных катастроф не имеет большой ценности, так как по причине технологического прогресса вероятность технологических катастроф будет расти, а вероятность природных катастроф – уменьшаться за счёт большей способности человека им противостоять.

Технологическому прогрессу свойствен экспоненциальный или даже гиперболический рост.

Предположим, что некая технология экспоненциально растёт и число условных «установок» равно:

(1)

где m - постоянная из закона Мура, обратная периоду удвоения m=1/t, T - время. При этом каждая установка имеет вероятность p в год привести к глобальной катастрофе. Вопрос – какова полная вероятность катастрофы P от сегодняшнего дня до момента и какова погодовая вероятность катастрофы?

 

(2)

 

Для вероятности катастрофы в 0,1 % в год для одной установки и периода около 2 лет, мы получаем плотность вероятности:

P =

Которая на графике выглядит так:

 

Чтобы получить полную вероятность за лет, надо перемножить шансы выживания за все лет и вычесть это из 1.

 

Подставляя в неё значение из (1) вместо каждого получаем:

 

 

И отсюда:

(3)

 

Если взять довольно разумную оценку как 0,1 % вероятности катастрофы на проект и период удвоения около 2 лет, то получим такой график:

 

P =

 

Говоря попросту, если опасная технология развивается экспоненциально, то шансы выжить убывают как экспонента от экспоненты, то есть очень быстро.

Видно, что переход от погодовой вероятности к полной вероятности не меняет характер кривой и не меняет сильно значение величины, что не удивительно, так как наибольший прирост приходится за последнее удвоение – и прирост за последнее удвоение равен приросту за всё предыдущее время. То есть мы видим ту же кривую, сдвинутую на 2 года влево.

Переход от неразличимо малой вероятности катастрофы к близкой к 1 занимает примерно 10 лет, и зависит только от постоянной закона Мура. Начальная плотность установок и вероятность катастрофы, приходящаяся на отдельную установку, не влияют на характер кривой и только сдвигают ее в ту или в другую сторону на несколько лет.

При этом тот период времени, когда катастрофа скорее всего произойдёт, то есть время, когда ее накопленные шансы меняются от 10 % до 90 % составляет всего порядка 5 лет. Если мы учтём гиперболический закон роста технологий, то это время ещё уменьшится.

Если мы добавим к этому то, что одновременно экспоненциально развивается несколько технологий, которые могут создавать глобальный риск: био, нано и ИИ (а также дешёвые ядерные технологии), – то мы должны ожидать, что они будут взаимодействовать друг с другом, взаимноусиливая друг друга, и ещё больше сокращая срок, когда глобальная катастрофа наиболее вероятна.

Стоит обратить внимание, что эта кривая очень похожа на кривую человеческой смертности, то есть вероятности дожития до определённого возраста. Это можно объяснить через механизм старения, состоящий в экспоненциальном накоплении числа ошибок, сбоев и исчерпаний «срока годности» различных систем организма. Кривая эта называется законом Гомперца и в общей форме имеет вид, который можно получить из формулы (3) после ряда преобразований:

Кроме того, сравнивая процессы старения человеческого организма, выражаемые в виде эмпирической кривой смертности с математической кривой смертности, выражаемой формулой Гомперца, можно оценить, каков вклад сложного системного взаимодействия разных причин в такой простой процесс, как экспоненциальное нарастание вероятности. Иначе говоря, старение человека можно использовать как аналогию процессам нарастания рисков, стоящих перед технологической цивилизацией. В целом, основной вывод состоит в том, что этот вклад не очень велик, то есть кривая Гомперца описывает продолжительность жизни человека с точностью до нескольких процентов. Однако, есть важное отличие. В конце кривой реальная вероятность смерти оказывается меньше ожидаемой, что делает возможным существование 110-летних стариков. Вторая особенность, видимо, состоит в том, что продолжительность жизни человека имеет верхний предел.

Иначе говоря, нас ждёт горячая пятилетка, хотя когда именно она начнётся – в 2010-х, 2020-х или 2030-х годах, – сказать трудно.

Горячая пятилетка произойдёт или до возникновения мощного ИИ, либо такой ИИ возникнет во время неё, и борьба разных ИИ между собой за власть над миром станет причиной катастрофических рисков. Вряд ли, однако, горячая пятилетка произойдёт после установления всемирной власти одного ИИ. Таким образом, речь идёт о последнем пятилетии перед Сингулярностью. Разумно ожидать, впрочем, что реальность окажется сложнее предлагаемой упрощённой модели.

Другой моделью, предсказывающей шансы глобальной катастрофы, является наблюдение А.Д.Панова [Панов 2004] и других исследователей об увеличении частоты кризисов с течением времени[17]. Каждый следующий кризис следует за другим с периодом в примерно 2.67 раз меньшим – 1500, 1830, 1945, 1991. Кризис сопровождается как крахом определённой политической системы, так и переходом к новым технологиям. Это также сопровождается обострением войн, в которых обкатываются эти новые технологии. Дальнейшее применение этой последовательности показывает, что очередной кризис должен произойти в районе 2010 года, и мы можем видеть его зарождение в виде нынешнего экономического кризиса. Затем последует передышка в лет 8, и потом новый кризис в 2018 году, и дальше кризисы должны последовать с нарастающей частотой вплоть до момента Сингулярности в районе 2025 года, когда частота кризисов, исходя из этой модели, должна обратиться в бесконечность. График частоты кризисов описывается гиперболой. Не трудно предположить, что в момент очередного кризиса, когда власть на Земле переходит в новые руки и одновременно возникают новые технологии, обеспечивающие эту власть, возрастает риск глобальных катастроф. Например, таким риском (исходя из знаний людей того времени) было испытание первой атомной бомбы. Кроме того, из модели Панова следует, что в последние пять лет перед Сингулярностью произойдёт огромное множество технологических революций, что опять-таки согласуется с предположением о «горячей пятилетке» в смысле глобальных катастроф. Такое быстрое изменение возможно только за счёт рекурсивно улучшающегося ИИ, и каждая революция – это некий шаг в его улучшении. Мы вернёмся к проблемам оценки вероятности глобальной катастрофы в главе «Непрямые способы оценки вероятности глобальной катастрофы».

1.4 Количественные оценки вероятности глобальной катастрофы, даваемые различными авторами

Далее я привожу известные мне оценки ведущих экспертов в этой области, которые публиковали исследования с оценками рисков человеческого вымирания (но эти оценки могут быть искажены в сторону пессимизма, так как более оптимистичные исследователи занимаются другими проблемами. Дж. Лесли, 1996, «Конец света»: 30 % в ближайшие 500 лет с учётом действия Доказательство Конца Света без него – 5 % [Leslie 1996].

Н. Бостром, 2001, «Угрозы существованию. Анализ сценариев человеческого вымирания и подобных опасностей»: «Мое субъективное мнение состоит в том, что будет ошибочно полагать эту вероятность меньшей, чем 25 %, и наивысшая оценка может быть значительно больше…» [Bostrom 2001].

Сэр Мартин Рис, 2003 «Наш последний час»: 50 % в XXI веке [Rees 2003].

Может показаться, что эти данные не сильно расходятся друг с другом, так как во всех случаях фигурируют десятки процентов. Однако, промежуток времени, на который даётся это предсказание, каждый раз сокращается (пятьсот лет – двести – сто), в результате чего погодовая плотность вероятности растёт. А именно: 1996 – 0,06 % – 0,012 %, 2001 – 0,125 %, 2003 – 0,5 %.

Иначе говоря, за десять лет ожидаемая оценка плотности вероятности глобальных катастроф, по мнению ведущих экспертов в этой области, возросла почти в 10 раз. Разумеется, можно сказать, что трёх экспертов недостаточно для статистики, и что эти мнения могут взаимно влиять друг на друга, однако тенденция неприятная. Если бы мы имели право экстраполировать эту тенденцию, то в 10-е годы XXI в. мы могли ожидать оценок погодовой вероятности вымирания в 5 %, а в 20-е годы – в 50 %, что означало бы неизбежность вымирания цивилизации до 2030 года. Несмотря на всю свою спекулятивность, эта оценка совпадает с другими оценками, полученными далее в этой книге разными независимыми способами.

С другой стороны, в годы холодной войны оценка вероятности вымирания тоже была высока. Исследователь проблемы внеземных цивилизаций фон Хорнер приписывал «гипотезе самоликвидации психозоя» шансы в 65 % [Лем 1970]. Фон Нейман считал, что ядерная война неизбежна, и все в ней погибнут [Bostrom 2001].

У Шкловского мы читаем: «По оценкам, выполненным американским футурологом А. Раппортом при экстраполяции естественных тенденций в развитии технологических цивилизаций, эти катастрофы (уничтожающие технологическую цивилизацию – А.Т.) должны реализоваться не позже 2030 года» [Шкловский 1987].

1.5 Глобальные катастрофы и горизонт прогнозирования

Целью данной работы является попытка проникнуть немного далее, чем позволяет нам обычный горизонт прогнозирования – туда, где за пределами однозначного прогноза виднеются туманные очертания разных возможностей. Я полагаю, что реальный горизонт однозначного прогноза, который мы можем делать со значительной достоверностью, составляет 5 лет, тогда как пространство за горизонтом, где мы можем усмотреть разные возможности, составляет ещё 20 лет после этого момента. И за этим моментом следует абсолютная непредсказуемость. Постараюсь это обосновать.

Оценка в 5 лет возникла из экстраполяции исторических промежутков, на которых в прошлом ситуация в мире настолько менялась, что конкретные политические и технологические тенденции устаревали. Так, от открытия цепной реакции до атомной бомбы прошло 6 лет, ещё 7 – до первой водородной, а с этого момента – ещё 5 лет до запуска первого спутника. Примерно по 5 лет длились и обе мировые войны, 6 лет заняла эпоха перестройки. Поступая в вуз на 5 лет, человек не знает обычно, куда он из него пойдёт работать и какую выберет специализацию. На 5 лет обычно выбирают президентов, и никто не знает, кто будет президентом через срок. СССР управлялся на основе пятилетних планов. Периодичность появления принципиально новых продуктов и их огромных рынков: PC, интернет, сотовые телефоны – тоже имеет порядок нескольких лет. Планы внедрения новых технологий микропроцессоров также составляют не более нескольких лет. При этом основной силой в ожиданиях на ближайшие несколько лет оказывается «сила инерции», то есть мы можем с высокой вероятностью говорить, что в течение ближайших 5 лет будет примерно тоже, что и сейчас, за исключением ряда развивающихся тенденций. Однако, когда мы говорим о сроках более 5 лет, то более вероятным выглядит утверждение о том, что ситуация кардинально изменится, чем то, что она будет такой же, как сейчас. Эффект ускорения исторического времени, о котором мы будем говорить дальше, вероятно, сокращает этот срок однозначного прогноза.

Таким образом, мы можем сказать, что до начала «полосы тумана» в однозначных прогнозах будущего у нас есть примерно 5 лет, то есть, это 2013 год от момента, когда я пишу эти строки. В целом, мы смутно представляем более поздние технологии, хотя и существуют отдельные технические проекты со сроком реализации до 2020-х годов (термоядерный реактор ИТЭР или строительство лунной базы), и есть бизнес-планы, которые рассчитаны на срок до 30 лет, например, долгосрочная ипотека. Но именно пять лет – это примерный срок, за которым неопределённость в глобальном состоянии всей системы начинает преобладать над определённостью в разных видах человеческой деятельности. Также надо отметить, что с течением времени всё большая неопределённость приходится не на технологические проекты, а на открытия. И хотя мы можем сказать, что некоторые проекты составлены на 20 лет вперёд, мы не знаем, какие факторы будут самыми главными в экономическом, политическом и техническом развитии.

Абсолютным пределом в прогнозах кажется 2030 год, в районе течение которого предполагаются возможными развитые нанотехнологии, искусственный интеллект и полное овладением биоконструированием. (Это мнение разделяется многими футурологами). Нам кажется, что сейчас нет смысла в оценках кривых роста популяции или запасов каменного угля на этот период, поскольку мы ничего не можем сказать о том, как повлияют сверхтехнологии на эти процессы. С другой стороны, большая неопределённость есть в выборе самой этой даты. Она часто фигурирует в разных дискуссиях о будущем технологий, о чём речь пойдёт дальше в главе про технологическую Сингулярность. Очевидно, что неопределённость в дате «2030 год» составит не менее пяти лет. Если произойдёт некая неокончательная катастрофа, то она может резко расширить горизонт прогнозирования просто за счёт сужения пространства возможностей (например, в духе сюжета: «теперь мы будем сидеть в бункере 50 лет»). Хотя большинство футурологов, пишущих на тему новых технологий, предполагают, что сверхтехнологии созреют к 2030 году, некоторые относят появление зрелых нанотехнологий и ИИ к 2040-м годам, однако мало кто решается дать обоснованные предсказания на более поздние даты. Кроме того, помимо неопределённости, связанной с нашим незнанием темпов развития разных технологий, их конвергенция в ходе технологической сингулярности даёт неопределённость более высокого порядка, связанную с тем, что мы не можем предсказывать поведение интеллекта, значительно превосходящего наш.




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 261; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.06 сек.