КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проблема создания микроскопических роботов и нанотехнологии
Слово «нанотехнологии» в последние несколько лет употреблялось неоправданно часто. Этим термином стали называть любой коллоидный раствор. Поэтому важно напомнить, что в основе понятия о нанотехнологиях лежит идея Феймана о возможности сверхминиатюрных технологий, то есть технологий оперирования материей на атомарном уровне, одним из аспектов которых является молекулярное производство, то есть «атомная» сборка материальных объектов с помощью микроскопических манипуляторов, называемых ассемблерами. Собственно молекулярных ассемблеров пока ещё не существует. Наноассемблер, по идее, представляет собой микроскопического робота, размером с живую клетку, способного по программе собирать материальные объекты атом за атомом. Основная его особенность в том, что он теоретически может, при наличии энергии и материалов, собрать собственную копию, причём довольно быстро, по некоторым оценкам, за время порядка 15 минут. Это позволяет, получив хотя бы одного наноробота, размножить их в неограниченном количестве, а затем направить на выполнение некоего задания. Перспективы здесь открываются грандиозные: например, поместив одного наноробота в раствор с питательными веществами, можно за несколько дней вырастить в нём двигатель для космической ракеты без единого атомного изъяна, а значит, с крайне высокой прочностью и показателями надёжности, тяги и массы. В затраты на производство войдет только стоимость самого питательного раствора и стоимость энергии, которые, в случае появления такой технологии, также значительно подешевеют. Другой пример: нанороботы, введённые в кровоток человеческого организма, могли бы исправлять все возможные повреждения в нём на клеточном уровне. И так далее. Эту картину впервые нарисовал Э. Дрекслер в книге «Машины созидания» [Drexler 1985]. Самое главное в отношении нанороботов это то, что для того, чтобы все эти фантастические возможности стали реальностью, достаточно произвести всего только одного универсального радиоуправляемого наноробота. Скорее всего, в развитии нанотехнологий рано или поздно произойдёт огромный перелом или скачок, своеобразная нанотехнологическая сингулярность: до появления наноробота нанотехнологии будут очень затратной отраслью с малой отдачей, а после – рогом изобилия. Для начала приведу несколько ярких фактов, поскольку иногда мы не осознаём, насколько далеко мы продвинулись. В 9-ом номере за 2007 г. журнала «В мире науки» сообщается о создании молекулярного конструктора, который позволяет всего из нескольких стандартных блоков конструировать «наноскопические структуры практически любой формы» [Шафмейстер 2007]. В декабре 2007 опубликована 400-страничная «Дорожная карта развития нанотехнологий», над которой трудились десятки учёных под покровительством небезызвестного DARPA. До появления первых нанороботов (названных в ней «Atomically precise productive nanosystems» – наносистемы, позволяющие осуществлять производство с атомарной точностью) в соответствии с этой картой осталось от 10 до 25 лет[58]. Основной опасностью в отношении нанотехнологий считается распространение нанотехнологической «серой слизи», то есть микроскопических саморазмножающихся роботов, способных превратить в себя, то есть съесть, всю биосферу. Возможность неконтролируемого размножения нанороботов рассматривал ещё Дрекслер, а Р. Фрейтас опубликовал научную статью «Проблема серой слизи» [Freitas 2000], где дал количественные оценки скорости возможного распространения опасных нанороботов по Земле. Основные особенности «серой слизи» таковы: 1. миниатюрность; 2. способность к саморазмножению; 3. способность к самостоятельному распространению по всей Земле; 4. способность незаметно и эффективно уничтожать крупноразмерную технику и живые организмы; 5. анонимность; 6. дешевизна; 7. автономность от человека (солдата). Серая слизь и основанное на ней нанотехнологическое оружие являются высшим выражением этих принципов, объединяющим их все вместе. Однако вовсе не обязательно объединять все эти принципы, чтобы получить опасное и эффективное оружие – достаточно реализовать некоторые из них. В 2008 году Центром ответственных нанотехнологий (CRN) было опубликовано исследование «Опасности молекулярного производства»[59], в котором рассмотрены различные экономические, социальные и военные последствия создания развитых нанотехнологий. Материалы этого исследования были переведены мною на русский язык. В целом мои выводы, которые изложены далее, согласуются с оценками экспертов CRN. Основная опасность нанотехнологий исходит не от создания с их помощью новых материалов, а от создания всё более миниатюрных роботов, пригодных как для молекулярного производства, так и для военного применения, поэтому имеет смысл объединить обсуждение рисков нанотехнологий и рисков применения различных роботов. Рассмотрим сначала риски глобальной катастрофы, вызываемой роботами. 7.2 Робот-распылитель Основная проблема использования военного и террористического биологического оружия и применения отравляющих веществ – это трудности их анонимного эффективного распыления. Эту задачу мог бы решить миниатюрный робот размером с птицу (например, авиамодель). Множество таких роботов могло бы быстро и незаметно «опылить» огромную территорию. В настоящий момент достигнут значительный прогресс в миниатюризации летающих роботов-дронов, и их размер уменьшился до размеров стрекозы. Большое количество роботов размером с насекомое могли бы перелетать на сотни и тысячи километров и равномерно распространяться по огромной площади, проникать в закрытые пространства – как это сейчас делают стаи саранчи. Например, американским агентством DARPA принята программа Nano Air Vehicle (NAV), которая предусматривает создание летающих дронов размеров менее 7.5 см и весом до 10 г.[60] Несколько миллиардов таких роботов могли бы представлять собой глобальный риск, так как могли бы распространиться по всей планете и распылить опасное биологическое или химическое оружие, или атаковать другими способами. То же могло бы сделать меньшее число высокоскоростных и более крупных дронов, действующих как самолёты-опылители, или ряд низкоорбитальных спутников. 7.3 Самовоспроизводящийся робот Хотя считается, что для эффективного самовоспроизводства нужны молекулярные нанотехнологии, возможно, что это не так. Тогда вполне макроразмерный робот мог бы размножаться, используя природные энергию и материалы. Этот процесс может быть двухступенчатым и использовать робота-матку и роботов-воинов, которых она производит и которые её обслуживают. Создание саморазмножающихся роботов привлекательно тем, что позволяет быстро и дёшево создать огромную армию или развернуть масштабное производство, особенно в космосе, куда дорого отправлять готовые изделия. Риск состоит в утрате контроля над такой способной к саморазмножению системой. Важно подчеркнуть, что речь идёт не о сильном универсальном искусственном интеллекте, а о вышедшей из-под контроля системе с ограниченным интеллектом, неспособным к самосовершенствованию. Большие размеры и неинтеллектуальность делают её более уязвимой, а уменьшение размеров, повышение скорости воспроизводства и повышение интеллектуальности – более опасной. Классический пример такой угрозы в биологическом царстве – саранча. Возможно, что такой робот будет содержать биологические элементы, так как они помогут быстрее усваивать вещества из окружающей среды. К настоящему моменту сделан трёхмерный принтер RepRap, который способен воспроизводить почти все собственные детали[61]. 7.4 Стая микророботов Боевые микророботы могли бы производиться как оружие на фабриках, вроде современных заводов по производству чипов, и даже с применением тех же технологий – литография теоретически позволяет делать подвижные части, например, небольшие маятники. При весе в несколько миллиграммов такие микророботы свободно могли бы летать в атмосфере. Каждый такой робот мог бы содержать достаточно яда, чтобы убить человека или замкнуть контакт в электротехническом устройстве. Чтобы атаковать всех людей на земле, потребовалось бы только несколько десятков тонн таких роботов. Однако, если они будут производиться по технологиям и ценам современных чипов, такое количество будет стоить миллиарды долларов. Р. Фрейтас пишет в статье «Нанощит»: «Например, наименьшее насекомое имеет размер около 200 микрон. Это даёт разумную оценку размеров изготовленного с помощью нанотехнологий оружия, предназначенного для поражения личного состава, способного осуществлять поиск людей и вспрыск токсина в незащищённых людей. Летальная доза токсина ботулизма для человека составляет около 100 нанограмм, или 1/100 от объёма данного вида оружия. 50 миллиардов несущих токсин микророботов – что достаточно теоретически для убийства каждого человека на Земле – может поместиться в одном чемодане»[62].
7.5 Армии крупных боевых роботов, выходящие из-под контроля Хотя армия США определённо нацелена на полную автоматизацию и замену людей роботами, до достижения этого ещё не менее десяти лет, а скорее всего, значительно больше. Как мы уже говорили, теоретически некая роботизированная армия может получить неверный приказ, и начать атаковать всё живое, став при этом недоступной для отмены команд. Чтобы стать реальной угрозой, это должна быть всемирная, распределённая по всей земле огромная армия, не имеющая конкурентов. Надёжность такой армии зависит только от ее информационной неуязвимости к неверным командам, то есть является вопросом информационной безопасности. Сейчас мы не можем решить его теоретически. С одной стороны, мы должны помнить, что все компьютерные устройства, изначально представлявшиеся как неуязвимые, были взломаны – от Windows до PSP. C другой стороны, система управления ядерными войсками ни разу не была взломана. В будущем информационный взлом будет осуществить проще, так как достаточно будет одному невидимому глазу нанороботу проникнуть в центральный управляющий компьютер, чтобы он начал выдавать неверные команды. 7.6 Миниатюризация роботов – путь к нанотехнологическому оружию Как мы уже говорили, нанотехнологии позволят создавать очень эффективное оружие, которое способно истребить всех людей, даже не обладая способностью к саморепликации. Облако нанороботов может распространиться по некой местности – или по всей Земле, обнаружить всех людей на ней, проникнуть в кровоток и затем синхронизировано нанести смертельный удар. Эта стая опаснее слепого биологического оружия, так как против неё не действуют карантины, и её трудно обнаружить не нанотехнологическим средствами до начала атаки. И поскольку нет пустого рассеивания экземпляров, на 10 миллиардов людей с запасом хватит 100 миллиардов нанороботов. Далее, если робототехника будет развиваться линейно, без грандиозного скачка, – а такой скачок возможен только в случае возникновения сверхсильного искусственного интеллекта – то промежуточные стадии будут включать автономных универсальных роботов всё меньших размеров. Сейчас мы можем видеть начальные фазы этого процесса. Даже самые крупные системы сейчас не вполне автономны, хотя уже есть андроиды, способные выполнять простую работу и автомобили, самостоятельно ездящие по простому маршруту. Есть и более примитивные механизмы с минимальной массой в несколько граммов (например, маленькие вертолётики) и экспериментальные модели отдельных частей микророботов. При этом скорость прогресса в этой области очень высока. Если в 2003 году большинство автономных автомобилей не могло тронуться с места, то в 2005 пять машин проехало по сложной трасе в пустыне и в горах 200 км, а в 2007 они выполнили задания по езде в городе с перекрёстками. Поэтому можно сказать, что до нанороботов будет ещё несколько стадий, если считать, что развитие идёт по пути непрерывного уменьшения размеров. (Однако некоторые лаборатории, никогда ранее не занимавшиеся робототехникой, уже сейчас делают элементы нанороботов, манипулируя отдельными атомами с помощью туннельных зондовых микроскопов. Таким образом, возможен внезапный скачок, когда будет сделан реальный наноробот, способный осуществлять саморепликацию.) Эти стадии включают в себя автономные машины-танки, автономных андроидов (размером с человека или собаку), автономных роботов размером с крысу, с насекомое, микророботов в доли миллиметра и нанороботов. Нам важно определить, с какого этапа такие роботы могут быть опасны для человечества. Понятно, что даже несколько самоуправляющихся танков не опасны. Однако уровень опасности возрастает тем значительнее, чем больше и дешевле таких роботов можно производить, а также чем легче им распространяться по свету. Это возможно по мере уменьшения их размеров и автоматизации технологий производства и самовоспроизводства, а также по мере роста спроса на продукты нанотехнологий. Если микророботов размером с комара можно будет штамповать по несколько центов за штуку, то они уже будут представлять серьёзную силу. В классическом романе «непобедимый» Станислава Лема [Лем 1964] «нанороботы» имеют размеры в несколько миллиметров, но способны организовываться в сложные структуры. Далее, в последнее время, в связи с экспансией дешёвой китайской рабочей силы, на второй план отошёл тот факт, что даже роботы обычных размеров могут участвовать в производстве самих себя в силу всё большей автоматизации производства на фабриках. Процесс этот идёт постепенно, но он тоже может иметь точку резкого экспоненциального перегиба, когда вклад роботов в собственное производство превзойдёт вклад людей. Это приведёт к значительному удешевлению такого производства, а, следовательно, и к увеличению вероятности создания роботизированных армий. Взаимный удар армиями микророботов может по катастрофичности последствий превосходить обмен ядерными ударами. Поверить в это трудно, так как трудно думать, что нечто очень маленькое может нанести огромный ущерб. (Хотя технологическая эволюция идёт в сторону того, что всё меньшее оружие имеет всё большую разрушающую силу, и атомная бомба тоже в этом ряду.) Удар микророботами может не быть таким зрелищным, как взрыв той же атомной бомбы, но может давать результат как идеальная нейтронная бомба в духе «школа стоит, а в ней никого». Микророботы могут применяться и как тактическое оружие, тогда они будут бороться друг с другом и пунктами управления, и как оружие устрашения и мести. Эту функцию сейчас выполняют стратегические ядерные силы. Именно в этом качестве они могут оказаться угрозой для всего человечества, в случае случайного или намеренного применения. При этом микророботы превосходят стратегические ядерные силы – они позволяют организовать более незаметную атаку, более внезапную, более анонимную, более дешёвую и наносящую больший ущерб. Правда, им не достаёт зрелищности, что может ослабить их психологическое воздействие – до первого реального боевого применения. 7.7 Неограниченное распространение самовоспроизводящихся нанороботов Возможность этого риска впервые указана Дрекслером, и исследована в статье Р. Фрейтаса «Проблема серой слизи» [Freitas 2000]. В отношении нанороботов, равно как и ИИ, нам трудно оценить вероятность их возникновения и распространения, потому что их пока у нас нет. Вместе с тем создание нанороботов имеет прецедент в области биологии, а именно: сама живая клетка является своего рода нанороботом. Белки являются самособирающимися универсальными механизмами, ДНК – управляющим компьютером. В этом смысле и искусственный интеллект имеет прецедент в виде человеческого разума и мировой науки как образа сверхразума. Юдковски предполагает, что от наноробота нас отделяет не время или нехватка неких промежуточных стадий, а только отсутствующее знание. То есть, обладай мы достаточным знанием, мы могли бы собрать такую последовательность ДНК, при исполнении которой клеткой был бы образован наноассемблер – то есть робот, способный собирать других роботов, а значит, способный к саморазмножению. Часто говорят о нанофабриках – то есть неких заводах, которые могут создавать произвольные конструкции из атомов и молекул. Однако нанофабрика и наноассемблер являются взаимозаменяемыми понятиями, потому что на универсальной нанофабрике можно создать наноассемблер, и наоборот. С одной стороны, идея о том, что в каждом доме будет нанофабрика вместо микроволновки, производящая всё ему нужное, выглядит красивой, но с другой, она требует реализации мер защиты больших, чем если бы речь шла о ядерном реакторе на дому. Развитые системы защиты уже предлагаются, и они включают в себя непрерывное зашифрованное подключение нанофабрики к сети, и сложный самоконтроль нанофабрики. Но, увы, все опыты по созданию абсолютно защищённой электроники, оптических дисков, файлов провалились. Думается, причина этого в том, что количество «мозгов» на стороне хакеров гораздо больше, чем на стороне производителя, а задача хакера проще – не предусмотреть все возможные уязвимости, а найти хотя бы одну их них. Распространение тех или иных систем искусственного интеллекта тоже сделает подбор ключей доступа к нанофабрикам проще. Эрик Дрекслер оценивает необходимое количество атомов в нанороботе- репликаторе, который будет представлять собой нечто вроде минизавода с конвейерной лентой и микро-станками, в один миллиард. Каждый манипулятор сможет осуществлять не менее миллиона операций в секунду, что типично для скорости работы ферментов. Тогда он сможет собрать устройство в миллиард атомов за 1000 секунд – то есть собрать самого себя. Проверкой этого числа является то, что некоторые бактерии могут делиться со скоростью раз в 15 минут, то есть приблизительно те же 1000 секунд. Такой робот репликатор мог бы за 1 сутки размножиться до массы в 1 тонну, а полностью поглотить массу Земли за 2 дня. Катастрофа этого рода называется «серой слизью». В связи с малостью размеров нанороботов в течение критически важных первых суток этот процесс не будет иметь никаких внешних проявлений, в то время как триллионы нанороботов будут разноситься ветром по всей Земле. Только прямое попадание ядерной бомбы в очаг распространения в самые первые часы могло бы помочь. Есть предложения сделать репликаторы неспособными размножаться во внешней среде, в которой нет некоего критически важного очень редкого химического элемента. Подробнее см. упоминавшуюся уже статью Р. Фрейтеса «Проблема серой слизи», где рассмотрены различные сценарии распространения опасных нанороботов и защитные контрмеры. Фрейтас отмечает, что нанороботы будут выдавать себя по интенсивному выделению тепла в процессе воспроизводства, поэтому важно наладить мониторинг окружающей среды на предмет странных температурных аномалий. Кроме того, размножающиеся нанороботы будут нуждаться в энергии и в материале, а источником и того и другого является только биомасса. Р. Фрейтас выделяет несколько возможных сценариев распространения «серой слизи»: · «серый планктон» – нанороботы, размножающиеся в океане и пользующиеся ресурсами гидратов метана на дне. Они могут уничтожить морскую биосферу и привести к выделению парниковых газов в атмосферу. Морская биосфера крайне важна как поглотитель СО , генератор кислорода и пищи для людей. · «серая пыль» – эти нанороботы размножаются в воздухе, создавая непроницаемый заслон в атмосфере, ведущий к «ядерной зиме». · «Серый лишайник» – эти нанороботы размножаются на скалах. · «Серая слизь, питающаяся биомассой» – это самый неприятный сценарий. При этом самый выгодный для ускоренного размножения, так как биомасса содержит и материалы для постройки, и источник энергии. Прямое попадание ядерной бомбы в колбу с таким репликатором могло бы уничтожить их, но даже близкое попадание – только рассеять. Бактерия в своём росте ограничена наличием питательной среды. Если универсальный репликатор будет знать, как заменять одни атомы другими, он сможет потреблять почти любое вещество, кроме чистых сред из одного материала. Они могут быть также всеядны в выборе источника энергии, если будут обладать информацией о том, как использовать разные источники. Всё же обеспечение энергией будет для «серой слизи» более сложной проблемой, чем доступ к материалам. 7.8 Вероятность возникновения нанороботов и возможное время осуществления этого события Возникновение микророботов весом в граммы и доли грамма выглядит практически неизбежным, и все технологии для этого есть, только они не будут репликаторами. Однако настоящие нанороботы, размером меньше бактерии, находятся ещё в далёкой перспективе. Если они будут созданы силами ИИ, то весь возможный вред от них можно внести в графу рисков ИИ, поскольку он будет управлять их действиями. (Но всё же есть вариант, когда ИИ окажется достаточно умным, чтобы создать нанороботов, и всё же настолько глупым, чтобы не суметь их контролировать.) И даже без ИИ всё более мощные компьютеры дадут возможность всё точнее и всё быстрее вычислять параметры деталей будущих микро- и нанороботов. Поэтому можно ожидать, что прогресс в создании нанороботов будет ускоряться. Состояние дел в отрасли таково, что создание нанороботов-репликаторов в ближайшие годы маловероятно. Поэтому можно предположить, что если нанороботы и будут созданы без помощи реального ИИ, то это произойдёт между 2020 и 2040 годами. Если сравнивать нанотехнологии с биотехнологиями и ИИ, можно увидеть, что эти технологии гораздо менее зрелы, и отстают лет на 20-30 от своих собратьев. Поэтому шансы на то, что сильные нанотехнологии (то есть нанорепликаторы) будут созданы раньше ИИ и биопринтера, не очень велики. Выводы: мы можем столкнуться с рисками цивилизационной катастрофы, создаваемой микророботами, ещё до того, как реальные нанороботы будут сделаны. Чем мельче, дешевле и способнее к самовоспроизведению будут микророботы, тем больший ущерб они способны нанести, и тем больше субъектов смогут ими обладать.
Дата добавления: 2015-07-13; Просмотров: 371; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |