Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метанеоднородность




В качестве элементов структуры на данном уровне выступают крупные части залежи, различающиеся по каким‑либо наиболее общим свойствам, таким, как характер насыщения, литологии и т. п. В метаструктуре нефтегазовой залежи как системы на данном уровне служат различные зоны, которые могут быть выделены в пределах залежи по характеру насыщения, а также – в случае большой мощности продуктивных отложений – зональные интервалы, выделяемые из геологических (например, по характеру макронеоднородности) или технических соображений. При объединении нескольких залежей в один эксплуатационный число элементов метаструктуры увеличивается: в качестве элементов эксплуатационного объекта как единой системы будут выступать части всех залежей, объединенных в единый объект.

Пока единственным способом описания и отображения метанеоднородности является использование профильных разрезов и карт, на которых показаны границы элементов метауровня.

Методы количественной характеристики метанеоднородности, как и мезонеоднородности, еще предстоит разработать.

Необходимо подчеркнуть, что существование охарактеризованных выше типов геологической неоднородности неосознанно, на интуитивном уровне ощущалось и ранее. Однако четко сформулированные представления отсутствовали, что приводило к нечеткости терминологии, неясности понятий и необоснованному использованию характеристик одного структурного уровня для решения задач, относящихся к другому структурному уровню. В настоящее время наиболее широко изучается геологическая неоднородность нефтегазонасыщенных пород и пластов на ультрамикроуровне, микроуровне и макроуровне. Мезо- и метауровням уделяется меньше внимания, хотя знания о первом крайне важны для решения задач повышения нефтегазоотдачи, а знания о втором – для выделения эксплуатационных объектов на многопластовых месторождениях.

 

 
Кровля и подошва: 1 -пласта, 2 -прослоя; 3 -условные границы между частями пласта с различной проницаемостью; проницаемость мкм2: 4 - ‹0,01; 5 - 0,01-0,05; 6 - 0,05-0,1; 7 - 0,1-0,4; 8 - ›0,4; 9 - непроницаемые породы.  

 

 

Рисунок 2 – Отображение макро- и микронеоднородностей на геологическом разрезе (на примере фрагмента горизонта XIII
месторождения Узень)

 

1 - граница зоны распространения коллекторов; 2 - внешний контур нефтеносности; коллекторы: 3 - непродуктивные; 4 -низкопродуктивные 5 среднепродуктивные; 6- высокопродуктивные; 7 - скважины

Рисунок 3 – Фрагмент карты распространения коллекторов разной продуктивности пласта Тл Павловского местородждения

 

Изучение метанеоднородности позволяет решать следующие задачи:

1) определить целесообразность объединения нескольких пластов (горизонтов, залежей) в один эксплуатационный объект;

2) выбирать системы размещения добывающих и нагнетательных скважин как на отдельные залежи, так и на эксплуатационном объекте;

3) обосновывать мероприятия по повышению эффективности разработки эксплуатационного объекта;

4) оценивать энергетическую характеристику отдельной залежи и эксплуатационного объекта;

5) оценивать энергетическую характеристику отдельной залежи и эксплуатационного объекта;

6) геологически обосновывать целесообразность одновременно раздельной эксплуатации залежей на многопластовом месторождении;

7) организовывать эффективный контроль за выработкой отдельных элементов как отдельных залежей, так и многопластовых эксплуатационных объектов.

Таким образом, неоднородность пластов можно охарактеризовать и оценить посредством ряда показателей, отображающих особенности геологического строения залежи. В настоящее время предложены различные показатели, характеризующие степень геологической неоднородности и изменчивости параметров продуктивных пластов. Показатели макронеоднородности пластов по цели использования можно разделить на две условные группы:

1) показатели, позволяющие проводить сравнительную оценку степени неоднородности и изменчивости параметров пластов;

2) показатели, используемые в гидродинамических расчетах при проектировании и анализе разработки нефтяных месторождений.

Условность такого разделения заключается в том, что ряд показателей первой группы для определенных условий применяются и при количественной оценке неоднородности пластов для учета их при проектировании.

К показателям первой группы, используемым для сравнительной оценки степени геологической неоднородности пластов, кроме уже известных коэффициентов относительной песчанистости, расчлененности и литологической связанности, относятся коэффициенты распространения, прерывистости, а также коэффициент Лоренца и коэффициент неоднородности, предложенный Поласеком и Хатчинсоном. Ниже приводится краткая характеристика названных показателей.

Для характеристики микронеоднородности пластов можно использовать гранулометрические коэффициенты Траска: медианный диаметр зерен Md, коэффициент отсортированности S о и коэффициент асимметрии S к. Для получения количественной характеристики этих коэффициентов необходимо построить в полулогарифмическом масштабе координат кумулятивную кривую распределения гранулометрического состава пород, по которой определяют квартили трех порядков.

При использовании квартилей за средний размер зерен принимают медиану, т. е. такой размер зерна, по отношению к которому половина зерен крупнее, а вторая половина – мельче. Для вычисления коэффициента S о, характеризующего степень однородности зерен по величине, и коэффициента S к, иллюстрирующего симметричность распределения зерен относительно среднего, находят величину первой Q 1 и третьей Q 3 квартилей. Относительно первой квартили три четверти образца сложены более крупными зернами; по отношению к третьей квартили большими оказывается одна четверть зерен. Тогда коэффициент отсортированности вычисляют по выражению:

а коэффициент асимметрии как:

Следует иметь в виду, что величину этих коэффициентов можно определить по любым данным гранулометрического состава пород, что они выражены не менее чем в трех фракциях и содержание крайних фракций не превосходит 25 %.

Коэффициенты Траска позволяют сравнивать не только гранулометрический состав пород различных пластов, но и в некоторой мере судить об условиях их образования. Так, увеличение среднего размера зерен может указывать на возрастание скорости движения среды, а уменьшение коэффициента отсортированности – на длительность процесса переотложения.

Комплексный подход к вопросам исследования литологического строения продуктивных пластов, изучения их слоистой и зональной неоднородности позволяет решать задачи, связанные с промышленной доразведкой и разработкой нефтяных пластов.

 




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 676; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.