Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение. Аппаратная реализация CRC32




Аппаратная реализация CRC32.

В качестве порождающего многочлена возьмем CRC-32-IEEE 802.3.

Синтез схемы вычислителя 32-х разрядной контрольной суммы в последовательном коде произведем по описанному выше алгоритму. Результат построения схемы представлен на рис.4.

Рис. 4. Аппаратная реализация CRC32.

Заключение

В ходе курсовой работы нами была разработана аппаратная реализация вычислителя 32-разрядной циклической контрольной суммы CRC, с приемом данных в последовательном коде. При проектировании устройства, в качестве порождающего использован стандартизованный полином CRC -32-IEEE 802.3.

 

Телефонная связь так глубоко проникла в нашу среду, что мы не представляем жизнь без нее. Поднять трубку, набрать номер и услышать голос друга или близкого человека? Что может быть проще? Но за этим стоит огромный труд физиков, технологов, электриков и людей других специальностей.

В 1947 году произошло событие, которое послужило отправной точкой для создания сотовой связи. Сотрудник Bell Laboratories, Д. Ринг, во внутреннем меморандуме выдвинул идею сотового принципа организации сетей подвижной связи. Инженер предложил основные идеи, которые по сей день лежат в основе современных сотовых сетей.

С одной стороны, сотовая связь проста и понятна, как движение колеса, но как только мы начинаем рассматривать ее более пристально, то открываются всевозможные технические тонкости, подкрепленные десятками патентов и авторских свидетельств. На расстоянии эти подробности теряются и опять открывается вид неделимого целого - комплекса сотовой связи.

Итак, давайте обсудим построение системы сотовой связи. Следует обозначить основные проблемы, с которыми мы столкнемся при ее создании. Для создания сотовой сети нужно получить набор частот или частотный диапазон. Именно в нем базовая станция будет общаться с вашим мобильным терминалом. Основным принципом работы сотовых сетей считают принцип повторного использования частот. Именно он позволяет существенно повысить ее емкость и покрывать практически неограниченное пространство, применяя при этом конечный набор частот. Обратим внимание на рисунок.

В нашем распоряжении есть три частоты (f1, f2, f3). В первой соте (ячейке) мы используем частоту f1. Во второй соте (ячейке) использовать ту же частоту, то есть f1, мы не можем из-за явления интерференции. Интерференция – физическое явление, которое возникает при наложении двух (или более) волн от одинаковых источников и приводит к усилению или ослаблению амплитуды волны. Поэтому борьба с интерференцией – одна из основных задач при частотном планировании, то есть распределении частот по сотам (ячейкам). Итак, поскольку во второй соте (ячейке) мы не можем использовать частоту f1 — используем частоту f2. В третьей соте мы используем частоту f3, а в четвертой соте мы опять можем использовать частоту f1.

Картина предельно проста. Однако на практике инженеры сталкиваются с серьезными проблемами. Действительно, нарисовать границы сот тонкими прямыми линиями удается только на бумаге. Реальный ландшафт, особенно городской, накладывает серьезные ограничения на геометрию зоны покрытия каждой базовой станции. Поэтому фактическое покрытие можно проверить только экспериментальным путем. Так как количество точек в пространстве бесконечно, то проверить их все невозможно. Даже если аппроксимировать каждое место пространства в зоне действия базовой станции до кубического метра, то работа невыполнима. Отсюда появление белых пятен на карте покрытия и мест с активной интерференцией, которая ведет к помехам.

В соответствии с рекомендациями CEPT, стандарт GSM-900 предусматривает работу передатчиков в двух диапазонах частот. Полоса частот (частоты на которых передается информация) 890–915 МГц используется для передачи информации с мобильной станции (мобильныйтелефон) на базовую станцию (uplink). Полоса частот 935–960 МГц – для передачи информации с базовой станции на мобильную станцию (downlink). При переключении каналов во время сеанса связи дуплексный разнос (разность между частотами передачи и приема) постоянен и равен 45 МГц. Разнос частот между соседними каналами связи составляет 200 кГц. Таким образом, в отведенной для приема/передачи полосе частот шириной 25 МГц размещаются 124 канала связи (124 канала для всех операторов GSM данного региона).

Кроме этого, в нашей стране хорошо известен еще один популярный диапазон - GSM-1800. Полоса частот передачи информации от мобильной станции (телефона) к базовой станции (uplink) составляет 1710–1785 МГц и полоса частот для передачи информации от базовой станции к мобильной станции (downlink) составляет 1805–1880 МГц. Дуплексный разнос- 95 МГц. В полосе частот шириной 75 МГц размещается 374 канала связи.

Использование GSM-1800 целесообразно в городских условиях. Плотность абонентов тут больше, и поэтому дополнительная канальность приходится очень кстати. Кроме того, электромагнитные колебания высокой частоты имеют лучшую проникающую способность через всевозможные технические строения, коих в городах великое множество. В чем прелесть GSM-900? Так как диапазон этот живет, то у него есть свои преимущества. Главным достоянием можно считать его достаточную чистоту и доступность в силу родоначальности. С этим можно спорить. Однако мы считаем, что это так. Разумеется, в нем сидят и военные, и специальные службы, но все знают, что там, подобно локомотиву, мчится GSM. Это огромная машина, которая практически срослась с государством и дает ему очень много денег. Кроме этого, GSM-900 лучше работает на дальних расстояниях. К этому вопросу мы вернемся чуть позже.

Обсуждение других частотных диапазонов лежит вне поля наших интересов, так как они не прижились в России и Европе. Хочется заметить только одно – там нет существенных отличий. Все практически так же. Только другой частотный диапазон.

Итак, мы обсудили основную рабочую среду сотовой сети GSM. Настало время препарировать ее содержимое, которое расскажет нам, что, где и за что отвечает.

 

Структура и компоненты сети GSM

MSC (Mobile Switching Centre) - центр коммутации подвижной связи; BSS (Base Station System) - оборудование базовой станции; ОМС (Operations and Maintenance Centre) - центр управления и обслуживания; MS (Mobile Stations) - подвижные станции.

Функциональное сопряжение элементов системы осуществляется рядом интерфейсов. Все сетевые функциональные компоненты в стандарте GSM взаимодействуют в соответствии с системой сигнализации МККТТ SS N 7 (CCITT SS. N 7).

Центр коммутации подвижной связи обслуживает группу сот и обеспечивает все виды соединений, в которых нуждается в процессе работы подвижная станция. MSC аналогичен ISDN коммутационной станции и представляет собой интерфейс между фиксированными сетями (PSTN, PDN, ISDN и т.д.) и сетью подвижной связи. Он обеспечивает маршрутизацию вызовов и функции управления вызовами. Кроме выполнения функций обычной ISDN коммутационной станции, на MSC возлагаются функции коммутации радиоканалов. К ним относятся "эстафетная передача", в процессе которой достигается непрерывность связи при перемещении подвижной станции из соты в соту, и переключение рабочих каналов в соте при появлении помех или неисправностях.

Каждый MSC обеспечивает обслуживание подвижных абонентов, расположенных в пределах определенной географической зоны (например, Москва и область). MSC управляет процедурами установления вызова и маршрутизации. Для телефонной сети общего пользования (PSTN) MSC обеспечивает функции сигнализации по протоколу SS N 7, передачи вызова или другие виды интерфейсов в соответствии с требованиями конкретного проекта.

MSC формирует данные, необходимые для выписки счетов за предоставленные сетью услуги связи, накапливает данные по состоявшимся разговорам и передает их в центр расчетов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети.

MSC поддерживает также процедуры безопасности, применяемые для управления доступами к радиоканалам.

MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления, кроме передачи управления в подсистеме базовых станций (BSS). Регистрация местоположения подвижных станций необходима для обеспечения доставки вызова перемещающимся подвижным абонентам от абонентов телефонной сети общего пользования или других подвижных абонентов. Процедура передачи вызова позволяет сохранять соединения и обеспечивать ведение разговора, когда подвижная станция перемещается из одной зоны обслуживания в другую. Передача вызовов в сотах, управляемых одним контроллером базовых станций (BSC), осуществляется этим BSC. Когда передача вызовов осуществляется между двумя сетями, управляемыми разными BSC, то первичное управление осуществляется в MSC. В стандарте GSM также предусмотрены процедуры передачи вызова между сетями (контроллерами), относящимися к разным MSC. Центр коммутации осуществляет постоянное слежение за подвижными станциями, используя регистры положения (HLR) и перемещения (VLR). В HLR хранится та часть информации о местоположении какой-либо подвижной станции, которая позволяет центру коммутации доставить вызов станции. Регистр HLR содержит международный идентификационный номер подвижного абонента (IMSI). Он используется для опознавания подвижной станции в центре аутентификации (AUC).

Основные характеристики

В стандарте GSM определены 4 диапазона работы (ещё есть пятый):

[править] 900/1800 МГц (используется в Европе, Азии)

Характеристики GSM-900 GSM-1800
Частоты передачи MS и приёма BTS, МГц 890 — 915 1710 — 1785
Частоты приёма MS и передачи BTS, МГц 935 — 960 1805 — 1880
Дуплексный разнос частот приёма и передачи, МГц    
Количество частотных каналов связи с шириной 1 канала связи в 200 кГц    
Ширина полосы канала связи, кГц    



Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 358; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.