Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры отношения эквивалентности




Определение

Определение

Пусть – конечное множество. Отношением на данном множестве будем называть любое подмножество его декартового произведения .

Рассмотрим декартово произведение на себя: . Т.е. это множество всевозможных слов из двух букв в алфавите .

Отношением эквивалентности называется подмножество декартового произведения, которое удовлетворяет следующих трем свойствам:

1. Рефлексивность. .

2. Симметричность. .

3. Транзитивность. .

Пример 1. Рассмотрим в качестве множества X множество натуральных чисел: . Для него рассмотрим обычное равенство натуральных чисел. Скажем, что два натуральных числа эквивалентны, если они равны в обычном смысле. Очевидно, что это есть отношение эквивалентности.

Пример 2. Рассмотрим произвольное натуральное число . Числа x и y назовем эквивалентными , если они дают один и тот же остаток при делении на . Очевидно, что это есть отношение эквивалентности.

Пример 3. Введем отношение эквивалентности на множестве слов, длина которых не меньше числа . Рассмотрим множество этих слов в алфавите . Скажем, что пара слов и эквивалентны, если совпадают их первые букв. Убедитесь сами, что все три свойства эквивалентности выполнены.

Утверждение. Пусть – множество, – отношение эквивалентности на нем. Тогда разбивает все элементы на классы эквивалентных элементов (Любая пара различных классов не пересекается между собой- , и их объединение совпадает с множеством ; ; количество классов может быть бесконечным). Любая пара элементов одного класса эквивалентна, а любая пара элементов различных классов не эквивалентна. Данное разбиение однозначно определяется отношением эквивалентности .

Доказательство данного утвнрждения предлагается в качестве самостоятельного упражнения.

 

Определение: суперпозицией булевых функции

называется функция

, полученная путем подстановки

функции в функцию вместо некоторой переменной: .




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 569; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.