Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Групповой состав сернистых соединений некоторых нефтей




Химические свойства сульфидов. Вследствие наличия двух свободных пар у атома серы сульфиды образуют нерастворимые в углеводородах комплексные соединения с различными электроноакцепторными соединениями: галогенидами металлов (AlBr3,SnCl4,TiCl2), фтористым водородом, фторидом бора (BF3), сернистым ангидридом и др. На этой способности основаны методы их выделения из нефтяных фракций.

В зависимости от условий сульфиды могут окисляться сильными окислителями до сульфоксидов, а затем до сульфонов.

При нагревании сульфиды разлагаются с образованием сероводорода, меркаптанов и алкенов:

С увеличением молекулярной массы сульфидов термическая стабильность их падает.

Тиофены обладают самой высокой термической стабильностью из всех сернистых соединений. По своим химическим свойствам тиофены напоминают арены.

Сульфиды нефти. В нефтях найдено более 40 сульфидов, главным образом алкилсульфиды, в незначительных количествах обнаружены алкилциклоалкил-, алкилфенил- и дифенилсульфиды, алкилпроизводные тиопирана.

Алкил-, циклоалкил- и арилсульфиды составляют 50-70 %, алкилтофаны 40-50% (масс.) от суммы сернистых соединений лёгких и средних фракций нефтей.

В керосиновых и масляных фракциях содержатся полициклические сульфиды:

В некоторых нефтях содержатся циклические сульфиды, состоящие из тиациклопентана, конденсированного с бензольным кольцом: тиаиндан, диалкилтиаинданы.

Большую группу соединений, содержащихся в нефтях, средней и высококипящих фракциях нефтей и особенно в продуктах их термической переработки составляют тиофен и его производные. В нефтях содержатся алкилзамещённые тиофена. В высококипящих фракциях значительно более распространены арилпроизводные тиофана и тиофена и гибридные соединения.

Дисульфиды. Дисульфиды - соединения общей формулы R-S-S-R1. Называют их аналогично сульфидам, но с тем исключением, что окончание - сульфид заменяется окончанием -дисульфид, а частица -тио - частицей - дитио. Например:

Дисульфиды - тяжёлые жидкости с неприятным запахом, почти нерастворимые в воде и легко растворимые в органических растворителях.

Дисульфиды находятся в нефтях в небольших количествах.

Предполагают, что в пластовых нефтях дисульфиды отсутствуют, они образуются из меркаптанов в результате окисления их кислородом воздуха после добычи нефти.

С повышением молекулярной массы и температуры кипения нефтяных фракций содержание дисульфидов возрастает, но до определённого предела, так как они являются термически неустойчивыми веществами.

По своим химическим свойствам дисульфиды подобны сульфидам. При нагревании они разлагаются с образованием меркаптанов, сульфидов и сероводорода. Дисульфиды легко восстанавливаются до меркаптанов, что используется при их определении в присутствии других сераорганических соединений:

Сернистые соединения нефтей. В зависимости от природы нефти содержание серы в нефтях может изменяться от десятых долей до нескольких процентов.

Содержание различных классов сернистых соединений в некоторых нефтях представлено в табл. 17.

Распределение сернистых соединений по фракциям нефти различно. С повышением температуры кипения фракций содержание сернистых соединений увеличивается.

Таблица 17

Распределение сернистых соединений в высокосернистых нефтях

различных месторождений России

Регион Содержание серы, % масс. Распределение серы в расчёте на общее её содержание, % масс
Тиолы Сульфиды Гомологи тиофена и высокомолекулярные структуры
Башкирская АССР 1,9-4,0 0-10 6-40 50-94
Татарская АССР 0,9-4,0 0-2,6 11-36 61-89
Куйбышевская обл. 2,0-3,7 0,09-7,3 7,4-24 69-92
Оренбургская обл. 2,6-3,2 0,72-2,7 7,3-20 77-92
Пермская обл. 1,0-3,1 0-7,2 7,6-29 63-93
Сибирь 0,9-3,0 0-74 0-28 26-92

 

Большая часть (70-90% масс.) их сосредоточена в тяжёлых нефтяных остатках (мазуте и гудроне) и особенно в асфальто-смолистой части.

Распределение сернистых соединений по нефтяным фракциям зависит от типа нефти (табл. 18).

Таблица 18

Распределение серы по фракциям сернистых и

высокосернистых нефтей, % масс.

Регион Фракции, 0С
н.к.-120 120-200 200-250 250-300
Башкирская АССР 0,02-0,57 0,08-1,74 0,35-2,5 0,67-3,95
Татарская АССР 0,02-0,25 0,05-1,04 0,17-2,29 0,72-3,13
Куйбышевская обл. 0,02-0,27 0,02-0,75 0,02-1,61 0,07-3,18
Оренбургская обл. 0,01-0,18 0,11-0,67 0,38-1,17 1,18-2,4
Пермская обл. 0,02-0,10 0,06-0,59 0,12-1,56 0,25-2,59
Сибирь 0,01-0,05 0,02-0,36 0,16-0,72 0,43-1,58

 

Содержание сернистых соединений в нефтяных фракциях можно приближённо определять по эмпирической формуле А.К. Каримова:

где r- содержание сернистых соединений в данной фракции, % масс.;

а - содержание серы в данной фракции, % масс.;

М - молекулярная масса фракции.

В табл. 19 для примера приведён групповой состав сернистых соединений двух нефтей с общим содержанием серы в одной около 1 % (Сызранская нефть), в другой около 5% (Чусовская нефть).

 

Таблица 19

 

Температура выкипания фракций Количество серы, % масс. Количество серы в % масс. на общее содержание серы в данной фракции в виде:
0С на фракцию сероводорода элементарной серы меркаптанов сульфидов дисульфидов * остаточное
Сызранская нефть
до 200 0,18 5,4 13,6 39,7 1,6 1,1 38,6
               
200-300 1,02 1,0 10,4 1,0 1,9 8,8 76,9
Чусовская нефть
до 200 0,40 7,3 4,3 15,4 32,4 0,5 40,0
200-300 2,78 0,0 2,1 2,5 15,1 11,8 68,2
* Существенная часть “остаточной” серы входит в тиофеновые и бензо-тиофеновые структуры.
                       

Происхождение сернистых соединений нефти. Существуют различные предположения о происхождении сернистых соединений, содержащихся в нефтях.

Наиболее вероятно, что сернистые соединения образовались в природных нефтях в результате окислительно-восстановительных процессов, происходящих между сульфатами и углеводородами в течение геологического времени.

Процесс осернения природных органических веществ, включая нефти, состоит из нескольких стадий. Первой стадией является реакция окисления углеводородов и других органических соединений присутствующими в подземных водах сульфатами металлов, которые при этом восстанавливаются в сульфиды и гидросульфиды:

Образующиеся сульфиды и гидросульфиды разлагаются с образованием сероводорода:

Далее предельные углеводороды, взаимодействуя с сероводородом, образуют низшие гомологи и элементарную серу:

Свободная сера может образоваться также за счёт окисления сероводорода оксидами металлов, присутствующими в отложениях или же растворёнными в водах сульфатами:

Далее идут собственно процессы осернения, т.е. реакции между серой и углеводородом и другими органическими соединениями, входящими в состав нефтей и нефтеобразующих веществ, и образование серусодержащих органических молекул.

Некоторые исследователи полагают, что часть сернистых соединений унаследована от исходного органического вещества, в частности, от протеинов.

Влияние на свойства нефтепродуктов и применение сернистых соединений.

Присутствующие в нефтях сернистые соединения затрудняют её переработку, главным образом, из-за коррозии аппаратуры и отравления катализаторов.

Увеличение содержания сернистых соединений в топливах увеличивает расход топлива, способствует коррозионному износу двигателя. Образующиеся при сгорании топлив оксиды серы загрязняют атмосферу, нанося большой вред окружающей среде. Поэтому в настоящее время широко используют процессы очистки нефтепродуктов от сернистых соединений.

В то же время сернистые соединения являются ценным сырьём для органического синтеза, поэтому начинают развиваться процессы выделения их из нефтяных фракций.

Меркаптаны находят применение для регулирования скорости полимеризации каучуков и как антиоксидантные добавки к полимерам и топливам.

Сульфиды применяют для синтеза красителей и биологически активных веществ. Продукты окисления сульфидов – сульфоксиды, сульфоны и сульфокислоты находят применение как растворители и экстрагенты металлов (таких как золото, платина, серебро и др.). Сульфиды и сульфоксиды являются хорошими ингибиторами коррозии металлов, применяются как флотореагенты, поверхностно-активные вещества, пластификаторы, а также инсектициды, гербициды и фунгициды.

Тиофены применяются для синтеза присадок к маслам и топливам, синтеза стимуляторов роста растений и полимерных материалов.

 

Азотистые соединения. Содержание азота в составе нефтей не превышает 0,3%, а содержание азотистых соединений максимально достигает 10% в высокосмолистых нефтях.

Содержание азота в нефтях зависит, главным образом, от географического расположения месторождений и, в меньшей степени, от геологической формации, из которой получена нефть. Нефти с наибольшим содержанием азотистых соединений добываются из третичных отложений.

В лёгких фракциях нефти азотистые соединения отсутствуют или обнаруживаются в ничтожных количествах. С увеличением температуры кипения фракций содержание азотистых соединений в них возрастает, и, как правило, больше половины азотистых соединений сосредоточено в смолисто-асфальтовой части.

В нефтях обнаружены азотистые соединения, относящиеся к классу аминов и амидов кислот.

Амины. Амины - производные аммиака, у которого один, два или все три атома водорода замещены органическими группами. В зависимости от этого их подразделяют на первичные, вторичные и третичные:

В зависимости от органической группы, связанной с атомом азота, амины подразделяют на алкил-, арил- и гетероциклические.

Номенклатура. Алкиламины называют, прибавляя окончание - амин к названию алкильных групп, связанных с атомом азота:

 

Ариламины, а также амины с двумя, тремя и большим числом аминогрупп рассматриваются как аминопроизводные углеводородов. Многие ариламины имеют тривиальные названия:

Гетероциклические амины обычно имеют тривиальные названия:

Физические свойства. Первичные и вторичные амины - полярные соединения и могут образовывать водородные связи с водой. Поэтому низкомолекулярные амины хорошо растворяются в воде.

Низшие алкиламины - газы, высшие - жидкости или твёрдые вещества, которые легко окисляются на воздухе и темнеют. Они обладают неприятным запахом, ядовиты. Физические свойства некоторых аминов представлены в табл. 20.

Таблица 20




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 990; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.038 сек.