Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сила, движущая агрегат




Механизм возникновения движущей агрегат силы можно рассмотреть на схеме сил и моментов, действующих на ведущее колесо с пневматической шиной при установившемся движении по деформируемой поверхности (допущения – шина гладкая, без почвозацепов), рисунок 4.3.

Момент, переданный от двигателя на ведущие колеса, будет равен:

Mk=Mд·im·ηм, (4.12)

где im - общее передаточное число трансмиссии (от коленчатого вала двигателя до ведущих колес); ηм - общий механический КПД силовой передачи; Мд – крутящий момент на коленчатом вале двигателя, Н·м.

Рисунок 4.3 – Схема сил и моментов, действующих на ведущее колесо с пневматической шиной при установившемся движении по деформируемой поверхности

 

Момент на ведущем колесе Мк (рисунок 4.3) вызывает возникновение между колесом и почвой соответствующей касательной реакции Rx. Ее величина и направление зависит от момента Мк, физико-механических свойств и величины деформации почвы, радиальной и тангенциальной жесткости пневматической шины.

Rx разложим на две составляющие Xk и Y''k. Xk – это проекция касательной реакции почвы на ось параллельную плоскости качения, Y''k – это проекция касательной реакции почвы на ось, перпендикулярную плоскости качения и параллельную силе тяжести mk·g.

Представим на основании известных законов механики крутящий момент на ведущем колесе Мк парой горизонтальных сил F=Pк с плечом rк приложенных к оси и ободу колеса и вертикальные реакции почвы Y'k и Y''k равнодействующей Yk, смещенный от оси на расстояние d из-за деформаций почвы и шины (рисунок 4.3).

Yк·d=Mf·k – момент сопротивления качению ведущего колеса.

Отношение Мк/rк называют касательной силой тяги и обозначают Рк. Касательную силу тяги можно определить по формуле:

Рк=(Мд-ΣМво) · im · ηм/rk, (4.13)

где ΣМво – суммарный крутящий момент, передаваемый через валы отбора мощности, приведенный к коленчатому валу двигателя, Н·м; rk – динамический радиус качения ведущего колеса, м.

 

Сила же F, приложенная к оси колеса, но направленная в сторону движения (как и сила ), будет движущей силой, вызывающей перемещение колеса.

Таким образом, движущая агрегат сила создается двигателем трактора, величина которой определяется реакцией почвы и направлена по движению параллельно плоскости качения.

Выразим движущую агрегат силу:

F=Pk - (Mfk/rk), (4.14)

то есть она меньше касательной силы тяги на величину сил сопротивления качению ведущего колеса. Величина этой силы ограничивается, с одной стороны, составляющей реакции почвы Xk, направленной в сторону движения, а с другой касательной силой Рк, развиваемой двигателем. Таким образом, величина движущей агрегат силы ограничивается не только значением касательной силы тяги, но и сцеплением движителей с почвой.

На ведущее колесо влияет большое количество факторов, определяющих его сцепление с почвой, притом изменяющихся случайным образом. Это значительно затрудняет процесс определения сцепных свойств. В связи с этим для упрощения расчетов по определению значения движущей силы вводится понятие коэффициента сцепления μ, который представляет отношение силы F к сцепному весу трактора Gсц:

μ=F/Gсц (4.15)

Значения μ для различных оснований, по которым движется трактор, приведены в соответствующих справочниках.

В связи с этим движущую агрегат силу, ограничиваемую сцеплением с почвой Fc, можно определить по формуле:

Fc=μGсц, (4.16)

где Gсц – сцепной вес трактора.

 

В эксплутационных расчетах эту силу называют силой сцепления, под которой понимают максимальное значение параллельного пути реакции почвы, обеспечивающей поступательное движение.

Gсц=mgλ, (4.17)

где m - эксплутационная масса трактора; λ - коэффициент показывающий какая часть веса трактора нагружает ведущие колеса (движители). Для гусеничных тракторов и колесных со схемой 4x4 λ =1, для колесных со схемой 4x2 - λ =0,65-0,7.

 

В качестве номинального принимают такое значение μн, которое обеспечивает образование движущей силы при буксовании движителей, не превышающих допустимых значений: для колесных тракторов до 14 - 15%, для гусеничных - до 6-7%.

FснGcц, (4.18)

Максимальное значение Fс соответствует такому μмах, при котором буксование движителей близко к 100%.

Таким образом, движущая агрегат сила при условии Fc≥Pk определяется величиной касательной силы тяги, а при условии Fc<Pk определяется силой сцепления с почвой. Таким образом, сила, движущая агрегат, определяется минимальной силой из двух независимых – касательной силой тяги или силой сцепления.

Отсюда легко появляется понятие тягового усилия трактора Ркр для равномерного движения при сопротивлении воздушной среды Рв =0.

Ркр=Fmin-(Pf ± Pα). (4.19)

На тягу будет расходоваться та наименьшая из возможных в данных условиях движущий агрегат сил за вычетом сил сопротивления движению самого трактора.

В теоретическом плане сопротивление передвижению трактора складывается из двух частей – сопротивления качению ведущих колес в виде момента Мfk, преодолеваемого моментом Мk до образования движущей силы, и сопротивления движению трактора (Рf±Pα), преодолеваемого движущей силой до образования тягового усилия. Однако даже в эксперименте очень трудно разделить Мfk и Рf, поэтому в практических расчетах их считают вместе, только по одному коэффициенту сопротивления движению трактора f. Этим как бы численно уравнивают движущую силу F и касательную силу тяги Рk, то есть F=Pk.

Пользуясь уравнением тягового баланса трактора (4.19) для равномерного движения (Р j=0) при отсутствии сопротивления воздушной среды (Рв =0), получим выражение для определения силы тяги трактора Ркр

Ркр = (Мд-ΣМво)im ηм /rk - mg(f ± i). (4.20)

По формуле (4.20) можно определить тяговые усилия, которые может развить трактор в данных условиях (f, i) на всех передачах (im, ηм).

 




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 88; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.