Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структурування навчального матеріалу з теми «Проблематика штучного інтелекту».




При створенні моеї презентації я використовувала матеріал до теми «Проблематика щтучного інтелекту»,в моїй презентації налічуется 16 слайтів:

Перший слайд, це титульна сторінка, другий слайд, це план презентації.

Третий та четвертий слайд, це…

1. Поняття “штучний інтелект”

«Штучний інтелект»— розділ компютерної лінгвістики та інформатики, що займається формалізацією проблем та завдань, які нагадують завдання, виконувані людиною. При цьому, у більшості випадків алгоритм розвязання завдання невідомий наперед. Точного визначення цієї науки немає, оскільки у філософії не розвязане питання про природу і статус людського інтелекту. Немає і точного критерію досягнення компютером «розумності», хоча перед штучним інтелектом було запропоновано низку гіпотез, наприклад, Тест Тюринга або гіпотеза Ньюела- Саймона. Нині існує багато підходів як до розуміння задач ШІ, так і до створення інтелектуальних систем.

На початку XVII століття Рене Декарт зробив припущення, що тварина — деякий складний механізм, тим самим сформулювавши механічну теорію. В 1623 р. Вільгельм Шикард побудував першу механічну цифрову вичислювальну машину, за якою послідували машини Блеза Паскаля (1643) і Лейбніца (1671). Лейбніц також був першим, хто описав сучасну двійкову систему числення, хоча до нього цією системою періодично захоплювались різні великі вчені. В ХІХ столітті Чарльз Беббідж і Ада Лавлейс працювали над програмованою механічною обчислювальною машиною

В 1910—1913 рр. Бертран Рассел і А. Н. Уайтхед опублікували працю «Принципи математики», яка здійснила революцію в формальній логіці. В 1941 р. Конрад Цузе побудував перший працюючий програмно-контрольований компютер. Воррен Маккалок і Вальтер Піттс в 1943 р. опублікували A Logical Calculus of the Ideas Immanent in Nervous Activity, поклавши основи нейронних мереж.

Пятий та шостий слай до яких входить…

2.Становлення штучного інтелекту, як галузь інформатики

На початку 80-х років у дослідженнях зі штучного інтелекту сформувався самостійний напрямок, що одержав назву "експертні системи" (ЕС).

Експертна система - це програмний засіб, що використовує експертні знання для забезпечення високоефективного вирішення неформалізованих задач у вузькій предметній області.

Область застосування

• Доведення теорем;

• Ігри;

• Розпізнавання образів;

• Прийняття рішень;

• Адаптивне програмування;

• Створення машинної музики;

• Обробка даних природною мовою;

• Мережі, що навчаються (нейромережі);

• Вербальні концептуальні навчання.

Сьомий та восьмий слайд…

3.Основні проблеми та проблемні середовища ШІ.

З успадкуванням пов’язана дуже серйозна проблема – проблема винятків. Вона полягає в тому, що деякі підкласи можуть не успадковувати ті чи інші властивості надкласів. Інакше кажучи, характерні риси класу успадковуються всіма його підкласами, крім деяких.

Тип 1. Статичне проблемне середовище: статична, предметна область; сутності представляються як сукупність атрибутів і їхніх значень; склад сутностей незмінний; БЗ не структуровані; вирішуються статичні задачі аналізу, використовуються тільки спеціалізовані що виконуються твердження.

Тип 2. Статичне проблемне середовище: статична, предметна область; сутності представляються у виді атрибутів із значеннями або вироджених об'єктами (фреймів); склад сутностей незмінний; ієрархія БЗ або відсутня, або слабко виражена (нема спадкування властивостей); вирішуються статичні задачі аналізу, використовуються спеціалізовані твердження, що виконуються.

Тип 3. Статичне проблемне середовище: статична, предметна область; сутності представляються у виді об'єктів; склад сутностей змінюваний; БЗ структуровані; вирішуються статичні задачі аналізу і синтезу, використовуються загальні і спеціалізовані що виконуються твердження.

Тип 4. Динамічне проблемне середовище: динамічна предметна область; сутності представляються сукупністю атрибутів і їхніх значень; склад сутностей незмінний; БЗ не структуровані; вирішуються динамічні задачі аналізу, використовуються спеціалізовані твердження, що виконуються.

Тип 5. Динамічне проблемне середовище: динамічна предметна область; сутності представляються у виді об'єктів; змінюваний склад сутностей; БЗ структуровані; вирішуються динамічні задачі аналізу і синтезу; використовуються загальні і спеціалізовані що виконуються твердження.

Девятий,десяти та одинадцятий, дванадцятий слайд…

4.Інженерія знань. Модель представлення знань.

У системах, побудованих на основі правил, поведінка визначається множиною правил виду: умова -> дія. Умова задає образ даних, при виникненні якого дія правила може бути виконана. Формування поведінки здійснюється по такій схемі. Умови правил співставляються з поточними даними, і ті правила, умови яких задовольняються значеннями поточних даних, стають претендентами на виконання. Потім по визначеному критерії здійснюються вибір одного правила серед претендентів і його виконання (тобто виконання дії, зазначеної в правій частині правила). Підкреслимо, що правила - претенденти можуть виконуватися одночасно при наявності декількох процесів.

Семантичні мережі складаються з вершин, що відповідають об’єктам чи поняттям, а також дуг, що відповідають відношенням, та зв’язують ці вершини. У таких мережах вершини можуть відповідати не тільки об’єктам чи поняттям, але і відношенням, логічним складовим частинам інформації (фактам істинності та хиби), комплексним об’єктам тощо.

Вершини поділяються на два класи: визначені (в -вершини) та невизначені (н -вершини). Перші відповідають впізнаним об’єктам, виявленим відношенням розпізнаним подіям, ситуаціям. Другі – невпізнаним, невиявленим.

В основі теорії фреймів лежить сприйняття стереотипних ситуацій, що мають, напри­клад, місце в процесі функціонування складних об'єктів, зокре­ма, виробничих. Для подання й опису стереотипних об'єктів, подій або ситуацій було введено поняття "фрейми", що є склад­ними структурами даних. У загальному вигляді фрейм можна розглядати як сітку, що складається з кількох вершин і відно­шень. На верхньому рівні фрейму подана фіксована інформація: факт стосовно стану об'єкта, який звичайно вважається істин­ним, На наступних рівнях розташовано множину так званих тер­мінальних слотів (терміналів), які обов'язково повинні бути за­повнені конкретними значеннями та даними. У кожному слоті задається умова, яка повинна виконуватися при встановленні відповідності між значеннями (слот або сам встановлює відповідність, або це робить дрібніша складова фрейму).

З тринадцятого до п’ятнадцятого слайду…

5. Нейрокібернетичний напрям розвитку штучного інтелекта.

Нейронні мережі, або штучні нейронні мережі, являють собою розвиток моделей, які виникли в результаті спроб імітування механізму мислення людини.

Елементарна складова мережі - нейрон - має кілька входів і один вихід. Елементи вхідного вектора множаться на вагові коефіцієнти W1.W2,...,Wn

Ці умови включають: множину даних, що включає інформацію, яка може характеризувати проблему; відповідно встановлену за розміром множину даних для навчання і тестування мережі; розуміння базової природи проблеми, яка буде вирішена; вибір функції суматора, передатної функції та методів навчання; розуміння інструментальних засобів розробника; відповідна потужність обробки.

Задачі оптимізації - найбільш розповсюджений і важливий для практики клас задач.

Генетичний алгоритм - новітній, але не єдино можливий спосіб рішення задач оптимізації.

 

 

 




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 112; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.