КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свойства вейвлет-преобразования /3, 1/.
Результаты вейвлет-преобразования, как скалярного произведения вейвлета и сигнальной функции, содержат комбинированную информацию об анализируемом сигнале и самом вейвлете. Получение объективной информации о сигнале базируется на свойствах вейвлет-преобразования, общих для вейвлетов всех типов. Рассмотрим основные из этих свойств. Для обозначения операции вейвлет-преобразования произвольных функций s(t) будем применять индекс TW[s(t)]. Линейность. TW[a·s1(t)+b·s2(t)] = a·TW[s1(t)]+b·TW[s2(t)]. (2.2.1) Для векторных функций из этого следует, что TW векторной функции есть вектор с компонентами TW каждой из компонент анализируемого вектора в отдельности. Инвариантность относительно сдвига. Сдвиг сигнала во времени на t0 приводит к сдвигу вейвлет-спектра также на t0: TW[s(t-to)] = C(a, b-to). (2.2.2) Инвариантность относительно масштабирования. Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала: TW[s(t/аo)] = (1/ао)·C(a/ао,b/аo). (2.2.3) Дифференцирование. dn{TW[s(t)]}/dtn = TW[dn(s(t))/dtn]. (2.2.4) TW[dn(s(t))/dtn] = (-1)n s(t) [dn(y(t))/dtn] dt. (2.2.5) Отсюда следует, что безразлично, дифференцировать ли функцию или анализирующий вейвлет. Если анализирующий вейвлет задан формулой, то это может быть очень полезным для анализа сигналов. Проанализировать особенности высокого порядка или мелкомасштабные вариации сигнала s(t) с игнорированием крупномасштабных полиномиальных составляющих (тренда и регионального фона) можно дифференцированием нужного числа раз либо вейвлета, либо самого сигнала. Это свойство особенно полезно, когда сигнал задан дискретным рядом. Аналог теоремы Парсеваля для ортогональных и биортогональных вейвлетов. s1(t)·s2*(t) = Cy-1 a-2 С(a,b) С*(a,b) da db. (2.2.6) Отсюда следует, что энергия сигнала может вычисляться через коэффициенты вейвлет-преобразования. Определения и свойства одномерного непрерывного вейвлет-преобразования обобщаются на многомерный и на дискретный случаи.
Дата добавления: 2017-02-01; Просмотров: 64; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |