КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Требования, предъявляемые к конструкции аппаратуры
АРТ-ОЛИМПИАДА по современной хореографии 2017 Город - Название клуба, дворца - Наименование коллектива - ФИО руководителя - ФИО педагога-репетитора - ФИО педагога-постановщика - Танцевальная дисциплина - Номинация - Возрастная группа - Название конкурсного номера - Время композиции - Телефон, e-mail -
Контактный телефон:
Вновь разрабатываемая РЭА должна отвечать тактико-техническим, конструктивно-технологическим, эксплуатационным, надежностным и экономическим требованиям. Все эти требования взаимосвязаны, и оптимальное их удовлетворение представляет собой сложную инженерную задачу. Тактико-технические требования. Эти требования обычно содержатся в техническом задании на аппаратуру и включают в себя такие характеристики, как вид измеряемой физической величины, диапазон измерений, точность измерений, быстродействие, объем памяти для регистрации данных, точность выполнения вычислительных операций и т. д. В основном данные требования удовлетворяются на ранних этапах разработки аппаратуры, когда определяются состав изделия, его структура, математическое обеспечение, основные требования к отдельным устройствам. Конструктивно-технологические требования. К этим требованиям относят: обеспечение функционально-узлового принципа построения конструкции РЭА, технологичность, минимальную номенклатуру комплектующих изделий, минимальные габариты и массу, меры защиты от воздействия климатических и механических факторов, ремонтоспособность. Функционально-узловой принцип конструирования заключается в разбиении принципиальной схемы изделия на такие функционально законченные узлы, которые могут быть выполнены в виде идентичных конструктивно-технологических единиц. Применение этого принципа конструирования позволяет автоматизировать процессы изготовления и контроля конструктивных единиц, упростить их сборку, наладку и ремонт. Технологичность конструкции в существенной степени определяется рациональным выбором ее структуры, которая должна быть разработана с учетом автономного, раздельного изготовления и наладки основных элементов, узлов, блоков. Конструкция РЭА тем более технологична, чем меньше доводочных и регулировочных операций приходится выполнять после окончательной сборки изделий. Понятие технологичности тесно связано с понятием экономичности воспроизведения в условиях производства. Наиболее технологичные конструкции, как правило, и наиболее экономичны не только с точки зрения затрат материальных ресурсов и рабочей силы, но и с точки зрения сокращения сроков освоения в производстве. Для них обычно характерны взаимозаменяемость, регулируемость, контролепригодность, инструментальная доступность элементов и узлов. В технологичной конструкции должны максимально использоваться унифицированные, нормализованные и стандартные детали и материалы. Аппаратура считается также более технологичной, если в ней предусматривается минимальная номенклатура комплектующих изделий, материалов, полуфабрикатов. Необходимость разработки для изделий новых материалов с улучшенными свойствами или новых технологических процессов определяется технико-экономическим эффектом их использования в данной аппаратуре. Конструкция РЭА, и ГИП в особенности с учетом условий ее эксплуатации, должна иметь минимальные габариты и массу, что особенно важно для бортовой аппаратуры, где ее объем и масса ограничиваются размерами и мощностью летательного аппарата, и для переносных (носимых) приборов, предназначенных для производства измерений в полевых условиях, в шахтах и горных выработках. В конструкции аппаратуры необходимо предусматривать меры защиты от воздействия климатических и механических факторов, состав и значение которых определяются объектом, где будет эксплуатироваться разрабатываемая РЭА. К числу важных характеристик конструкции РЭА следует также отнести ремонтоспособность - качество конструкции к восстановлению работоспособности и поддержанию заданной долговечности. Для повышения ремонтоспособности в конструкции предусматривают: а) доступность ко всем конструктивным элементам для осмотра и замены без предварительного удаления других элементов; б) наличие контрольных точек для подсоединения измерительной аппаратуры при настройке и контроле за работой аппаратуры; в) применение быстросъемных фиксаторов и т. д. Конструкция аппаратуры тем ремонтоспособнее, чем меньшую конструктивную единицу она позволяет оперативно заменять. Эксплуатационные требования. К эксплуатационным требованиям относят: простоту управления и обслуживания, различные меры сигнализации опасных режимов работы (выход из строя, обрыв заземления и т. д.), наличие аппаратуры, обеспечивающей профилактический контроль и наладку конструктивных элементов (стенды, имитаторы сигналов и т. д.). В последнее время развивается направление построения систем высокой надежности и живучести, имеющих в своем составе средства самодиагностики и автореконфигурации системы. С эксплуатационными требованиями тесно связаны требования обеспечения нормальной работы оператора. Важна также такая организация органов управления РЭА, которая бы отвечала современным эргономическим требованиям и требованиям инженерной психологии. Требования по надежности. Данные требования включают в себя обеспечение: 1) вероятности безотказной работы, 2) наработки на отказ, 3) среднего времени восстановления работоспособности, 4) долговечности, 5) сохраняемости. Вероятность безотказной работы есть вероятность того, что в заданном интервале времени при заданных режимах и условиях работы в аппаратуре не произойдет ни одного отказа. Наработкой на отказ называют среднюю продолжительность работы аппаратуры между отказами. Среднее время восстановления работоспособности определяет среднее время на обнаружение и устранение одного отказа. Эта характеристика надежности является также важным эксплуатационным параметром. Долговечностью прибора называют продолжительность его работы до полного износа с необходимыми перерывами для технического обслуживания и ремонта. Под полным износом при этом понимают состояние аппаратуры, не позволяющее ее дальнейшую эксплуатацию. Сохраняемость аппаратуры - способность сохранять все технические характеристики после заданного срока хранения и транспортирования в определенных условиях. Экономические требования. К экономическим требованиям относят: 1) минимально возможные затраты времени, труда и материальных средств на разработку, изготовление и эксплуатацию изделия; 2) минимальную стоимость аппаратуры после освоения в производстве. Тесная связь предъявляемых к аппаратуре требований приводит к тому, что стремление максимально удовлетворить одному из них ведет к необходимости снизить значение других. Так, желание увеличить надежность введением структурной избыточности неизбежно влечет за собой увеличение габаритов, массы, мощности потребления, стоимости. В данном случае выходом служит дальнейшее повышение степени интеграции микросхем. Соотношение между различными требованиями может быть установлено исходя из типа, назначения и характера эксплуатации проектируемых изделий. Для больших универсальных ГИВС наиболее важное требование — обеспечение максимального быстродействия, поскольку оно в существенной степени определяет их производительность. Наименее важное требование - обеспечение небольших габаритов и массы. Для универсальных встраиваемых приборов наиболее важные требования - высокая надежность и малая стоимость в серийном производстве. Приборы для массового потребления должны, прежде всего, иметь малую стоимость. Достижение высокого быстродействия для этого класса приборов - желательное, но не обязательное требование. Обычно стремятся достичь относительного высокого быстродействия, доступного в определенной ценовой категории. Бортовые изделия должны обладать высокой степенью надежности. При этом стоимость приборов в некоторых случаях не имеет существенного значения. Применение РЭА в комплексах геофизической техники накладывает на их конструкцию дополнительные жесткие требования. Это связано с тем, что при комплексном использовании успех выполняемой технологической операции в целом, например, каротажа скважины, может зависеть от правильной и безотказной работы даже одного прибора. О ремонте какого-либо прибора в составе ГИВС в процессе эксплуатации не может быть и речи. Здесь должна быть обеспечена возможность быстрой замены вышедших из строя блоков запасными. Поэтому основным требованием к приборам, установленным в ГИВС, является надежность. Не менее важные требования - способность работать практически во всех известных условиях эксплуатации, ремонтоспособность, малые габариты, масса, мощность потребления. 4.4. Показатели качества конструкции аппаратуры [1, 2] Большое разнообразие РЭА требует от разработчиков знания наборов показателей, по которым можно сравнивать существующие модели РЭА. Важнейшую роль при этом будут играть эксплуатационные и экономические показатели. С ними непосредственно связаны параметры, характеризующие РЭА как объект конструкторско-технологической разработки. К таким показателям следует в первую очередь отнести следующие: Сложность конструкции ЭА: C = K1(K2N + K3M), (4.4.1) где N - число составляющих элементов, М - число соединений; Кi - масштабный и весовые коэффициенты соответственно. Выражение (4.4.1) связывает число составляющих РЭА интегральных микросхем, полупроводниковых приборов, электрорадиоэлементов, элементов коммутации с числом разъемных и неразъемных соединений между ними, что определяет габариты, массу, надежность и другие общие параметры РЭА. Число элементов, образующих ЭА: N = nji, (4.4.2) где Ny - число устройств в РЭА, Кn - число типов применяемых элементов; nji - число элементов i - типа, входящих в j - устройство. Объем РЭА: V = VN + VC + VK + VУТ, где VN - общий объем интегральных микросхем и электрорадиоэлементов, образующих ПЭА, VC - объем, занимаемый всеми видами соединений, VK - объем несущей конструкции, обеспечивающей прочность и защиту ПЭА при транспортировании и эксплуатации, VУТ - объем теплоотводящего устройства. Коэффициент интеграции, или коэффициент использования физического объема qи = VN/V характеризует степень использования физического объема РЭА элементами, выполняющими полезную функциональную нагрузку, т. е. непосредственно определяющими электрическую схему РЭА (qи всегда меньше 1 и приближается к ней с использованием больших интегральных схем). Общая масса РЭА, определяемая как сумма масс, входящих в состав РЭА устройств: m = mN + mC + mК +mУТ. Общая мощность потребления ЭА: P = pj, где pj - мощность потребления j - устройства. Для цифровых устройств потребляемая ими мощность зависит от средней мощности потребления электронных компонентов. Известно, что 80 — 90 % мощности потребления рассеивается в виде теплоты и определяет тепловой режим РЭА и соответствующие перегревы элементов конструкции. Общая площадь, занимаемая РЭА: S = sj, где sj - площадь, требуемая для эксплуатации j - устройства РЭА. Собственная частота колебаний конструкции (элемента, устройства или всей ЭА): fo = (1/2p) , где К - коэффициент жесткости конструкции, m - масса конструкции РЭА. Степень герметичности конструкции ЭА, определяемая количеством газа, истекшем из определенного объема конструкции за известный отрезок времени: D = VoDP/tсл. где Vo - объем герметизированной части РЭА, tсл - срок службы РЭА, DP - избыточное давление газа в конструкции РЭА. Вероятность безотказной работы РЭА p(t) и средняя наработка на отказ Тср - показатели надежности ЭА (будут рассмотрены далее). Степень унификации РЭА: Кун = Nун/N, где Nyн - количество унифицированных элементов, a N - общее количество примененных в РЭА элементов. Коэффициент автоматизации конструкторских работ: Ка = Ма/М, где Ма - количество конструкторских работ, выполненных с применением ЭВМ, М - общее число конструкторских работ при проектировании РЭА. Важнейшим параметром, определяющим большинство эксплуатационных, конструкторских и экономических характеристик разрабатываемой РЭА, является технологичность, общее понятие о которой будет рассмотрено отдельно.
1. Защита от климатических воздействий среды. Влияние климатических факторов на конструкцию. Защитные покрытия. Герметизация элементов, узлов, устройств или всего прибора. 2. Тепловой режим аппаратуры. Тепловой режим аппаратурного блока. Нормальный тепловой режим. Охлаждение аппаратуры. Теплоотвод кондукцией. Теплоотвод конвекцией. Принудительное воздушное охлаждение Выбор способа охлаждения. 3. Защита аппаратуры от воздействия влажности. Выпадение росы. Длительное воздействие высокой влажности. Защита аппаратуры. Металлические покрытия. Лакокрасочные покрытия. 4. Защита от воздействия пыли. 5. Герметизация аппаратуры. 5.1. ЗАЩИТА ОТ КЛИМАТИЧЕСКИХ ВОЗДЕЙСТВИЙ СРЕДЫ [1] Выше рассматривались основные климатические факторы, оказывающие влияние на работоспособность РЭА в процессе ее эксплуатации. При этом отмечалось, что вид воздействующего фактора, а также его интенсивность и степень влияния зависят от типа климатической зоны и высоты над уровнем моря. Рассмотрим основные направления воздействия климатических факторов и меры борьбы с ними. Влияние климатических факторов на конструкцию. Влияние климатических факторов на конструкционные материалы выражается главным образом в возникновении процессов коррозии, потере механических и диэлектрических свойств, изменении электропроводности. Реакция на воздействующий фактор, степень и скорость изменения свойств конструкционного материала в зависимости от его состава различны. Процесс коррозии у металлов имеет химическую или электрохимическую природу, но причина в этих случаях одинакова: переход металла в более стабильное природное состояние. Процесс коррозии связан с отдачей энергии, что указывает на самопроизвольный ход реакции, без затраты энергии извне. Процесс химической коррозии протекает без участия влаги. При электрохимической коррозии растворение металла и возникновение новых соединений происходит с участием электролита, т. е. воды. Различают три вида коррозии: равномерную, неравномерную и межкристаллическую. При равномерной коррозии процесс распространяется постепенно от отдельных коррозирующих мест по всей поверхности металла. Неравномерная коррозия ограничивается отдельными местами и возникает, например, вследствие нарушения защитного покрытия. Коррозия межкристаллическая характеризуется проникновением в глубь металла путем разрыва структуры и распространением вдоль границ кристаллов. Наличие в атмосфере кислот, щелочей, солей ускоряет процессы коррозии. Воздействие агрессивной атмосферы на изоляционные материалы выражается в поглощении ими влаги, ухудшении диэлектрических свойств и постепенном разрушении. Изоляционных пластмасс, не поглощающих влаги, не существует. Количество проникшей влаги и время ее проникновения неодинаковы для различных материалов. Проникновение влаги в изоляционные материалы может быть капиллярное и диффузионное. Капиллярное проникновение имеет место в случае наличия в материале грубых микроскопических пор, трещин и других дефектов. Так как в микроэлектронике применяют только высококачественные изоляционные материалы, то они практически свободны от таких дефектов. Существенно большее значение имеет процесс диффузионного проникновения, который заключается в заполнении промежутков между молекулами материала молекулами воды. При этом перемещение молекул воды происходит в сторону меньшей их концентрации. При повышенной влажности молекулы воды проникают внутрь материала (поглощение влаги), а в сухой теплой атмосфере - из материала (высыхание). Поглощение влаги диэлектриком ведет к уменьшению его сопротивления, увеличению диэлектрических потерь, набуханию, механическим повреждениям. Плесневые грибки, как один из сильнейших биологических факторов, также могут отрицательно воздействовать на работоспособность аппаратуры. Для развития плесени необходимы большая относительная влажность воздуха (80 - 100%) и температура 25 - 37°С. Такие условия естественны для стран с тропическим влажным климатом, однако они могут возникнуть искусственно в помещениях, где эксплуатируется аппаратура. Среди материалов, применяемых в радиоэлектронной аппаратуре, наибольшее воздействие плесень оказывает на те, которые имеют органическую основу, и, в частности, на изоляционные материалы проводных соединений. Защитные покрытия. Для защиты поверхности металлических и неметаллических материалов от агрессивной внешней среды применяют различные покрытия, которые по назначению делят на три группы: защитные, защитно-декоративные и специальные. Защитные покрытия предназначены для защиты деталей от коррозии, старения, высыхания, гниения и других процессов, вызывающих выход аппаратуры из строя. Защитно-декоративные покрытия наряду с обеспечением защиты деталей придают им красивый внешний вид. Специальные покрытия придают поверхности деталей особые свойства или защищают их от влияния особых сред. По способу получения все покрытия разделяют на металлические и неметаллические. Металлические покрытия – покрытия, нанесенные горячим способом, гальванические, диффузионные и металлические на диэлектриках. Неметаллические покрытия – покрытия лаками, эмалями, грунтовками, а также противокоррозионное покрытие пластмассами. Выбор того или иного вида покрытия в каждом конкретном случае зависит от материала детали, ее функционального назначения и условий эксплуатации. Для борьбы с плесневыми грибками применяют три способа: Способ 1 - использование материалов, не склонных к образованию на них плесени (применение этого метода ограничивается возможностями выбора материалов). Способ 2 - изменение внутреннего климата в аппаратуре, имеющее цель лишить плесневые грибки благоприятной базы для развития (здесь главным образом требуется принимать меры к снижению влажности воздуха, так как саморазогрев как отдельных микросхем, так и полностью всей аппаратуры лишает грибки благоприятной температуры). Способ 3 - добавление в состав лака или эмали, которыми покрывают поверхность деталей, специальных химических веществ - фунгицидов.
Дата добавления: 2017-02-01; Просмотров: 138; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |