КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пептиды, обладающие гормональной активностью
вазопрессин, окситоцин, кортикотропин, глюкагон, кальцитонин, меланоцитстимулирующий гормон, рилизинг-факторы гипоталамуса и др.
ВАЗОПРЕССИН, антидиуретический гормон, синтезируемый крупноклеточными ядрами гипоталамуса; выделяется нейрогипофизом. Вазопрессин поддерживает на определенном уровне обратное всасывание воды в почечных канальцах, т. е. уменьшает количество выделяющейся мочи (антидиуретический эффект). При недостатке вазопрессина резко повышается выделение мочи, что может привести к несахарному диабету. Таким образом, вазопрессин - один из факторов, определяющих относительное постоянство водно-солевого обмена в организме. Вазопрессин вызывает также сужение сосудов и повышение кровяного давления (прессорный эффект). По строению и действию вазопрессин близок окситоцину. У некоторых позвоночных (птиц, земноводных, рыб) в гипофизе обнаружен аналог вазопрессина - вазотоцин, обладающий биологической активностью, как вазопрессин, так и окситоцина. Адренокортикотропный гормон (синоним: адренокортикотропин, кортикотропин) представляет собой полипептид с молярной массой 4500, состоящий из 39 аминокислотных остатков. Адренокортикотропный гормон является главным стимулятором биосинтеза кортикостероидных гормонов, в первую очередь кортизола. Он участвует также в регуляции секреции альдостерона и повышает интенсивность метаболизма в коре надпочечников. Внутриклеточным медиатором биологического эффекта АКТГ служит циклический 3',5'-АМФ (цАМФ). Помимо тропного действия на кору надпочечников АКТГ проявляет и периферический эффект, влияя прежде всего на меланофоры, в которых усиливается образование гранул пигмента, что вызывает гиперпигментацию кожи, особенно в условиях избытка АКТГ в крови (например, при аддисоновой болезни, синдроме Нелсона и др.). В этом процессе участвует и МСГ. АКТГ обладает липотропным эффектом; оказывает липолитическое действие на подкожную клетчатку. Воздействуя на ц.н.с., этот гормон участвует в сложном механизме памяти. Возможно, что АКТГ обладает дигиталисоподобной активностью. Меланоцитостимулирующий гормон (синоним: меланотропный гормон, меланотропин) образуется главным образом в промежуточной части аденогипофиза. У человека и других млекопитающих синтезируются два пептида, обладающие меланоцитостимулирующей активностью, — так называемый a- и b-МСГ. Наиболее вероятным биологическим эффектом b-МСГ является его участие в развитии гиперпигментации кожи и слизистых оболочек при гиперкортицизме и синдроме Нелсона, а также при эктопическом синтезе b-МСГ злокачественными новообразованиями. МСГ обладает липотропной активностью. Липотропный гормон (синоним липотропин) обладает липолитическим действием на периферическую жировую ткань. СООН-конец молекулы ЛПГ (с 61-го по 91-й аминокислотный остаток) является b-эндорфином — опиоидным пептидом, поэтому ЛПГ как биосинтетический предшественник b-эндофина играет важную роль в механизмах восприятия боли и процессах передачи нервного раздражения. Синтез ЛПГ аденогипофизом не доказан. Глюкагон Глюкагон – пептидный гормон, синтезируемый α-клетками островков Лангерганса поджелудочной железы. Глюкагон является одним из антагонистов инсулина, способствует образованию глюкозы в печени. Нормальная секреция гормона обеспечивает надежный контроль за поддержанием постоянства уровня глюкозы крови. Недостаток инсулина при сахарном диабете сопровождается избытком глюкагона, который, собственно, и является причиной гипергликемии. Значительное увеличение концентрации глюкагона в крови является признаком глюкагономы – опухоли α- клеток. Почти во всех случаях нарушается толерантность к глюкозе и развивается сахарный диабет. Диагностика заболевания основана на обнаружении в плазме крови очень высокой концентрации глюкагона. У новорожденных, если мать больна диабетом, нарушена секреция глюкагона, что может играть важную роль в развитии неонатальной гипогликемии. Гипогликемическая стимуляция выброса глюкагона отсутствует у больных СД I типа. Дефицит глюкагона может отражать общее снижение массы ткани поджелудочной железы, вызванное воспалением, опухолью или панкреатектомией. При дефиците глюкагона обнаруживают отсутствие подъема его уровня в тесте стимуляции аргинином.
Кальцитонин Кальцитонин - это пептидный гормон, состоящий из 32 аминокислот и продуцируемый клетками парафолликулярного эпителия (С-клетками) щитовидной железы. В норме кальцитонин участвует в регуляции кальциевого обмена, являясь физиологическим антагонистом паратгормона. В остеоцитах он ингибирует ферменты, разрушающие костную ткань, в клетках почечных канальцев кальцитонин вызывает повышенный клиренс и выделение Са2+, фосфатов, Mg2 +, К+, Na+ и тем самым способствует снижению концентрации Са2+ в крови. Регуляция синтеза и высвобождения кальцитонина обусловлена концентрацией Са2+ в крови: повышенная концентрация Са2+ стимулирует синтез и секрецию гормона, а сниженная – ингибирует эти процессы. Кроме того, секрецию кальцитонина стимулируют гастрин и глюкагон. Рилизинг-фактор (releasing factor, R-factor) - Пептидный нейрогормон позвоночных, синтезируемый в гипоталамусе и влияющий на выработку и выделение гормонов гипофиза; различают статины (угнетающие рилизинг-факторы, 3 типа) и либерины (стимулирующие рилизинг-факторы, 7 типов). Окситоцин — гормон гипоталамуса, который затем транспортируется в заднюю долю гипофиза, где накапливается (депонируется) и выделяется в кровь. Имеет олигопептидное строение. Гормональное воздействие окситоцина происходит через выделения из нейрогипофиза. Основные эффекты окситоцина состоят в стимуляции сокращения матки при родах (чему способствуют высокие концентрации эстрогенов в крови), сокращении гладких мышц протоков молочных желез, что вызывает выделение молока, а также в регуляции водно-солевого обмена и питьевого поведения. Окситоцин является одним из дополнительных факторов регуляции секреции гормонов аденогипофиза, наряду с либеринами. В структурах мозга окситоцин может выступать в роли медиатора или модулятора синаптических процессов, участвовать в механизмах памяти, стимулируя процессы забывания. Окситоцин активирует клеточный иммунитет, оказывает инсулиноподобное действие на жировую ткань. Повышенные количества окситоцина в крови могут вызывать снижение артериального давления.
Пептиды, принимающие участие в процессе пищеварения гастрин секретируют G клетки желудка: гастрин усиливает секрецию кислоты и пепсина, обладает трофическим эффектом на ЖКТ, усиливая пролиферацию, синтез белка и РНК; уровень гастрина повышается после приема пищи. Гастрин связывается со специфическими гастриновыми рецепторами в желудке. Рецепторы к гастрину являются метаботропными, их эффекты реализуются через повышение активности гормончувствительной аденилатциклазы. Результатом усиления аденилатциклазной активности в париетальных клетках желудка является увеличение секреции желудочного сока, в особенности соляной кислоты. Гастрин также увеличивает секрецию пепсина главными клетками желудка, что, вместе с повышением кислотности желудочного сока, обеспечивающим оптимальный pH для действия пепсина, способствует оптимальному перевариванию пищи в желудке. Одновременно гастрин увеличивает секрецию бикарбонатов и слизи в слизистой желудка, обеспечивая тем самым защиту слизистой от воздействия соляной кислоты и пепсина. Гастрин тормозит опорожнение желудка, что обеспечивает достаточную для переваривания пищи длительность воздействия соляной кислоты и пепсина на пищевой комок. Также гастрин увеличивает продукцию простагландина E в слизистой желудка, что приводит к местному расширению сосудов, усилению кровоснабжения и физиологическому отёку слизистой желудка и к миграции лейкоцитов в слизистую. Лейкоциты принимают участие в процессах пищеварения, секретируя различные ферменты и производя фагоцитоз. Рецепторы к гастрину имеются и в тонкой кишке и поджелудочной железе. Гастрин увеличивает секрецию секретина, холецистокинина, соматостатина и ряда других гормонально активных кишечных и панкреатических пептидов, а также секрецию кишечных и панкреатических ферментов.Тем самым гастрин создаёт условия для осуществления следующей, кишечной, фазы пищеварения. Секретин. Основным местом выработки секретина является двенадцатиперстная кишка, однако S-клетки, продуцирующие гормон, обнаруживаются в желудке и тонкой кишке на протяжении 140-160 см от привратника. Основным стимулом к выделению секретина является увеличение концентрации Н+. Торможение секреции гормона осуществляется по механизму обратной связи при защелачивании содержимого двенадцатиперстной кишки секретом поджелудочной железы. Главным местом действия секретина являются клетки выводных протоков поджелудочной железы. Если рН дуоденального содержимого становится выше 4.5, то стимуляции секреции поджелудочной железы секретином не отмечается. В желудке секретин стимулирует секрецию пепсина и функцию пилорического сфинктера, ингибирует секрецию гастрина, прекращает секрецию гастрина под влиянием пищи и ингибирует подвижность желудка (более подробно о роли секретина см. таблицу). В клинической практике определение секретина в крови необходимо для диагностики синдрома Вернера-Моррисона. Его уровень может быть значительно повышен у больных, страдающих язвенной болезнью двенадцатиперстной кишки. Для проведения дифференциальной диагностики между этими заболеваниями иногда используют пробу с секретином. Введение больному секретина при синдроме Вернера-Моррисона вызывает увеличение содержания гастрина в крови, тогда как уровень гастрина в крови здоровых людей и больных язвенной болезнью снижается. холецистокинин секретируют I клетки желудка: холецистокинин усиливает секрецию ферментов поджелудочной железы, усиливает сокращение желчного пузыря; секреция холецистокинина возрастает после приема пищи желудочный ингибиторный пептид секретируют K клетки тонкого кишечника: ингибирует секрецию кислоты и пепсина в желудке, уменьшает сократительную деятельность желудка, стимулирует образование секретина, инсулина; поступление глюкозы с пищей стимулирует секрецию желудочного ингибиторного пептида соматостатин секретируют D клетки желудка: соматостатин ингибирует выделение гастрина, секретина, желудочного ингибиторного пептида, мотилина, инсулина, глюкагона, гормона роста аденогипофиза
Дата добавления: 2014-01-04; Просмотров: 1713; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |