Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Достаточное основание




Закон исключенного третьего

Закон исключенного третьего связан с противоречащими суждениями. Он означает, что может быть лишь два противоречащих друг другу суждения, третьего быть не может. Отсюда и пошло название данного закона.

Если два суждения отрицают друг друга, одно что-либо утверждает, а другое противоречит существованию утверждаемого, можно говорить о том, что эти суждения являются противоречащими. Каждое из этих суждений является самостоятельным и рассматривается отдельно в силу того, что содержит информацию, отрицающую противное суждение. Рассмотрение их в этом плане производится для того, чтобы определить, какое из них истинно, а какое – ложно. Поскольку такие суждения полностью исключают друг друга, т. е. при истинности одного другое всегда является ложным, нет третьего варианта. То есть это означает, что отсутствует любое промежуточное состояние между истинностью и ложностью. Значит, не может быть третьего суждения относительно одного предмета, отражающего те же свойства, которые отражаются (утверждаются или отрицаются) двумя противоречащими суждениями.

Для более полного уяснения вопроса следует привести примеры. Для начала рассмотрим схематичные отражения противоречащих суждений: «Ни одно S не есть Р» и «Некоторые S есть Р»; «Все S есть Р» и «Некоторые S не есть Р»; «Это S есть Р» и «Это S не есть Р». Как можно заметить, все три приведенные пары суждений являются, соответственно, общими, частными и единичными, а также контрадикторными (т. е. типа A и не-А). Суждения «Юрий Гагарин является космонавтом, который первым полетел в космос» и «Юрий Гагарин не является космонавтом, который первым полетел в космос» – это противоречащие суждения.

При рассмотрении закона исключенного третьего всегда возникает вопрос о его различиях с законом непротиворечия. Это связано с тем, что в отношении рассматриваемых сейчас противоречащих суждений применяются оба эти закона. Однако между ними существует различие. Оно становится явным, если рассматривать контрарные (например, «Все люди имеют конечности» и «Ни один человек не имеет конечностей») суждения. В отношении них закон исключенного третьего не применяется.

Любое утверждение должно иметь основание. Это очевидно. Когда одна из сторон в споре утверждает что-либо, другая часто требует: «Обоснуй». Достаточным основанием при этом является достоверная информация. Любая истинная мысль должна быть обоснована в достаточной мере. Конечно, отсутствие достаточного основания не влечет ложности суждения, оно может быть истинным. Однако этот факт остается неизвестным до момента получения обоснования. При этом необходимо сказать, что в обосновании нуждается лишь истинное суждение. Ложное не может иметь достаточного основания вообще. Несмотря на то что в некоторых случаях с переменным успехом бывают попытки обосновать ложные суждения, такой подход нельзя назвать верным.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 352; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.