Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Выбор сталей для строительных конструкций




Классификация сталей

По прочностным свойствам стали условно делят на три груп­пы: обычной прочности (sy < 29 кН/см2); повышенной прочности (29 кН/см2sy < 40 кН/см2); высокой прочности (sy ≥ 40 кН/см2). Повышение прочности стали достигается легированием и терми­ческой обработкой.

Стали обычной прочности (sy < 29 кН/см2). К этой группе отно­сят низкоуглеродистые стали (С235...С285) различной степени раскисления, поставляемые в горячекатаном состоянии. Обладая отно­сительно небольшой прочностью, эти стали очень пластичны: протяженность площадки текучести составляет 2,5 % и более, соотношения sy / su 0,6...0,7. Хорошая свариваемость обес­печивается низким содержанием углерода (не более 0,22 %) и крем­ния. Коррозионная стойкость - средняя, поэтому конструкции, вы­полненные из сталей обычной прочности, следует защищать с по­мощью лакокрасочных и других покрытий. Однако благодаря невысокой стоимости и хорошим технологическим свойствам стали обычной прочности очень широко применяют для строительных ме­таллических конструкций. Потребление этих сталей составляет свы­ше 50% от общего объема. Недостатком низкоуглеродистых сталей является склонность к хрупкому разрушению при низких температу­рах (особенно для кипящей стали С235), поэтому их применение в конструкциях, эксплуатирующихся при низких отрицательных тем­пературах, ограничено.

Стали повышенной прочности (29 кН/см2sy < 40 кН/см2). Ста­ли повышенной прочности (С345...С390) получают либо введением при выплавке стали легирующих добавок (в основном марганца и кремния, реже никеля и хрома), либо термоупрочнением низкоуглеродистой стали (С345Т). Пластичность стали при этом несколько снижается и протяженность площадки текучести уменьшается до 1...1,5%.

Стали повышенной прочности хуже свариваются (особенно стали с высоким содержанием кремния) и требуют иногда использования специальных технологических мероприятий для пре­дотвращения образования горячих трещин.

По коррозионной стойкости большинство сталей этой группы близки к малоуглеродистым сталям. Более высокой коррозионной стойкостью обладают стали с повышенным содержанием меди (С345Д, С375Д, С390Д).

Высокое значение ударной вязкости сохраняется при температу­ре -40°С и ниже, что позволяет использовать эти стали для конст­рукций, эксплуатируемых в северных районах. За счет более высоких прочностных свойств применение сталей повышенной прочности приводит к экономии металла до 20...25%.

Стали высокой прочности (sy ≥ 40 кН/см2). Прокат из стали вы­сокой прочности (С440...С590) получают леги­рованием и термической обработкой. Для легирования используют нитридообразующие элементы, способствующие образованию мел­козернистой структуры.

Стали высокой прочности могут не иметь площадки текучести (при sy ≥ 50 кН/см2), и их пластичность (относительное удлинение) снижается до 14% и ниже. Отношение sy / su увеличивается до 0,8...0,9, что не позволяет учитывать при расчете конструкций из этих сталей пластические деформации.

Подбирая химический состав и режим термообработки, можно значительно повысить сопротивление хрупкому разрушению и обеспечить высокую ударную вязкость при температурах до - 70°С. Однако высокая прочность и низкая пластичность сталей требуют более мощного оборудования для резки, правки, сверления и других операций.

При сварке термообработанных сталей вследствие неравномер­ного нагрева и быстрого охлаждения в разных зонах сварного соеди­нения происходят различные структурные превращения. На одних участках образуются закалочные структуры, обладающие повышенной прочностью и хрупкостью (жесткие прослойки), на других ме­талл подвергается высокому отпуску и имеет пониженную прочность и высокую пластичность (мягкие прослойки).

Разупрочнение стали в околошовной зоне может достигать 5...30 %, что необходимо учитывать при проектировании сварных конструкций из термообработанных сталей. Эффект разупрочнения снижает введение в состав стали некоторых карбидообразующих элемен­тов (молибден, ванадий).

Применение сталей высокой прочности приводит к экономии металла до 25...30 % по сравнению с конструкциями из низкоуглеро­дистых сталей и особенно целесообразно в большепролетных и мощных конструкциях.

Атмосферостойкие стали. Для повышения коррозионной стойко­сти металлических конструкций применяют низколегированные ста­ли, содержащие в небольшом количестве (доли процента) такие эле­менты, как хром, никель и медь.

В конструкциях, подвергающихся атмосферным воздействиям, весьма эффективны стали с добавкой фосфора (например, сталь С345К). На поверхности таких сталей образуется тонкая оксидная пленка, обладающая достаточной прочностью и защищающая металл от развития коррозии. Однако свариваемость стали при наличии фосфора ухудшается. Кроме того, в прокате больших толщин металл обладает пониженной хладостойкостью, поэтому применение стали С345К рекомендуют при толщинах не более 10 мм.

В конструкциях, совмещающих несущие и ограждающие функ­ции (например, мембранные покрытия), широко используют тонко­листовой прокат. Для повышения долговечности таких конструкций целесообразно применение нержавеющей хромистой стали марки ОХ18Т1Ф2, не содержащей никеля. В больших толщинах прокат из хромистых сталей обладает повышенной хруп­костью, однако свойства тонколистового проката (особенно толщи­ной до 2 мм) позволяют применять его в конструкции при расчет­ных температурах до -40°С.

По химическому составу стали подразделяют на углеродистые и легированные. Углеродистые стали состоят из железа и углерода с некоторой добавкой кремния (или алюминия) и марганца. Прочие добавки (медь, хром и т.д.) специально не вво­дятся и могут попасть в сталь из руды.

Углерод, повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому для строительных металлических конструкций применяют только малоуглеродистые стали с содер­жанием углерода не более 0,22 %.

В состав легированных сталей помимо железа и углерода входят специальные добавки, улучшающие их качество. Поскольку боль­шинство добавок в той или иной степени ухудшают свариваемость стали, а также удорожают ее, в строительстве в основном применяют низколегированные стали с суммарным содержанием легирующих добавок не более 5 %.

В зависимости от вида поставки стали подразделяются на:

- горячека­таные;

- термообработанные (нормализованные или термически улучшенные).

В горячекатаном состоянии сталь далеко не всегда об­ладает оптимальным комплексом свойств. При нормализации из­мельчается структура стали, повышается ее однородность, увеличи­вается вязкость, однако существенного повышения прочности не происходит. Термическое улучшение (закалка в воде и высокотемпе­ратурный отпуск) позволяют получить стали высокой прочности, хорошо сопротивляющиеся хрупкому разрушению.

По степени раскисления стали могут быть кипящими, полуспокой­ными, спокойными.

Нераскисленные стали кипят при разливке вследствие выделения газов: такая сталь носит название кипящей и оказывается более за­соренной газами и менее однородной.

Степень раскисления обозначается буквами: кп - кипящая; сп - спокойная; пс - полуспокойная.

Кипящие стали, имея достаточно хорошие показатели по пределу текучести и временному сопротивлению, ху­же сопротивляются хрупкому разрушению и старению.

Чтобы повысить качество низкоуглеродистой стали, ее раскисляют добавками кремния от 0,12 до 0,3 % или алюминия до 0,1 %. Кремний (или алюминий), соединяясь с растворенным кислородом, уменьшает его вредное влияние. Кроме того, при соединении с ки­слородом раскислители образуют силикаты и алюминаты, которые увеличивают число очагов кристаллизации и способствуют образо­ванию мелкозернистой структуры стали, что ведет к повышению ее качества и механических свойств. Раскисленные стали не кипят при разливке в изложницы, поэтому их называют спокойными. Спокойная сталь более однородна, лучше сва­ривается, лучше сопротивляется динамическим воздействиям и хрупкому разрушению. Ее применяют при изготовлении ответствен­ных конструкций, подвергающихся статическим и динамическим воздействиям.

Спокойные стали примерно на 12 % дороже кипящих, что несколько ограничивает их применение.

Полуспокойная сталь по качеству является промежуточной меж­ду кипящей и спокойной. Ее раскисляют меньшим количеством кремния – 0,05...0,15 % (редко алюминием). По стоимости полуспокойные стали также занимают промежуточное положение. Низколегированные стали поставляют в основном спо­койной (редко полуспокойной) модификации.

8.7. Нормирование сталей.

Основным стандартом, регла­ментирующим характеристики сталей для строительных металличе­ских конструкций, является ГОСТ 27772 - 88. Согласно ГОСТу, фа­сонный прокат изготовляют из сталей С235, С245, С255, С275, С285, С345, С345к, С375, для листового и универсального проката и гну­тых профилей используются также стали С390, С390К, С440 и С590К. Стали С345, С375, С390 и С440 могут поставляться с повы­шенным содержанием меди (для улучшения коррозионной стойко­сти) при этом к обозначению стали добавляют букву Д.

Буква С в наименовании означает сталь строительную, цифра показывает значе­ние предела текучести в МПа, буква К - вариант химического состава.

Прокат поставляют как в горячекатаном, так и в термообработанном состоянии. Выбор варианта химического состава и вида тер­мообработки определяется заводом. Например, листовой прокат стали С345 может изготовляться из стали с химическим составом С245 с термическим улучшением. В этом случае к обозначению стали добавляют букву Т, например С345Т;

В зависимости от температуры эксплуатации конструкций и сте­пени опасности хрупкого разрушения испытания на ударную вяз­кость для сталей С345 и С375 проводятся при разных температурах, поэтому они поставляются четырех категорий, а к обозначению ста­ли добавляют номер категории, например С345-1, С375-2.

Оценку свариваемости стали проводят по углеродному эквива­ленту (%):

, (2.3)

где С, Mn, Si, Cr, Ni, Си, V и Р - массовая доля углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора, %.

Если Сэ < 0,4%, то сварка стали не вызывает затруднений, при 0,4%<Сэ<0,55% сварка возможна, но требует принятия специальных мер по предотвращению возникновения трещин. При Сэ > 0,55% опасность появления трещин резко возрастает.

Отличительной особенностью ГОСТ 27772 - 88 является использование для некоторых сталей (С275, С285, С375) статистических методов контроля, что гарантирует обеспеченность нормативных значений предела текучести и временного сопротивления.

Строительные металлические конструкции изготовляют также из сталей, поставляемых по ГОСТ 380 - 88* "Сталь углеродистая обык­новенного качества", ГОСТ 19281 - 89 " Прокат из стали повышен­ной прочности. Общие технические условия." и другим стандартам.

Различий между свойствами стали, имеющими одинаковый химический состав, но поставляемым по разным стандартам, нет. Разница в способах контроля и обозначениях. Так, по ГОСТ 380-88* в обозначении марки стали

указываются группа по­ставки, способ раскисления и категория.

При поставке по группе А завод гарантирует механические свойства, по группе Б - химический состав, по группе В - механические свойства и химический состав.

Для малоуглеродистых сталей в зависимости от вида испытаний на ударную вязкость установлено 6 категорий: категории 1, 2 - испы­тания на ударную вязкость не проводят, 3 - проводят при t = +20°С, 4 - при -20°С, 5 - при -20°С и после механического старения, 6 - по­сле механического старения.

Все эти факторы указывают в марке стали. Так, например, ВСтЗпсб - это сталь 3, полуспокойная, с гарантией в пределах вели­чин, установленных стандартом для этой стали, механических харак­теристик, химического состава и ударной вязкости после механиче­ского старения. В строительстве в основном используют стали марок ВСтЗкп2, ВСтЗпсб и ВСтЗсп5, а также сталь с повышенным содер­жанием марганца ВСтЗГпс5.

Стали, поставляемые по разным стандартам, взаимозаменяемы. Так, сталь С235 соответствует стали ВСтЗкп2, сталь С245 - ВСтЗпсб, сталь С255 - ВСтЗсп5. Рекомендации по такой замене приведены в нормах проектирования.

Выбор стали зависит от следующих факторов, влияющих на работу материала:

- температуры среды, в которой монтируется и эксплуатируется конструкция; этот фактор учитывает повышенную опасность хруп­кого разрушения при пониженных температурах;

- характера нагружения, определяющего особенность работы материала и конструкций при динамической, вибрационной и пере­менной нагрузках;

- вида напряженного состояния (одноосное сжатие или растяже­ние, плоское или объемное напряженное состояние) и уровня воз­никающих напряжений (сильно или слабо нагруженные элементы);

- способа соединения элементов, определяющего уровень собст­венных напряжений, степень концентрации напряжений и свойства материала в зоне соединения;

- толщины проката, применяемого в элементах. Этот фактор учитывает изменение свойств стали с увеличением толщины.

При выборе стали необходимо учитывать группу конструкций.

К первой группе относят сварные конструкции, работающие в особо тяжелых условиях или подвергающиеся непосредственному воздействию динамических, вибрационных или подвижных нагрузок (например, подкрановые балки, балки рабочих площадок или эле­менты эстакад, непосредственно воспринимающих нагрузку от под­вижных составов, фасонки ферм и т.д.). Напряженное состояние таких конструкций характеризуется высоким уров

нем и большой частотой нагружения.

Конструкции первой группы работают в наиболее сложных усло­виях, способствующих возможности их хрупкого или усталостного разрушения, поэтому к свойствам сталей для этих конструкций предъявляются наиболее высокие требования.

Ко второй группе относят сварные конструкции, работающие на статическую нагрузку при воздействии одноосного и однозначного двухосного поля растягивающих напряжений (например, фермы, ригели рам, балки перекрытий и другие растянутые, растянуто-изгибаемые и изгибаемые элементы), а также конструкции второй группы при отсутствии сварных соединений.

Общим для конструкций этой группы является повышенная опасность хрупкого разрушения, связанная с наличием поля растяги­вающих напряжений. Вероятность усталостного разрушения здесь меньше, чем для конструкций первой группы.

К третьей группе относят сварные конструкции, работающие при преимущественном воздействии сжимающих напряжений (например, колонны, стойки, опоры под оборудование и другие сжа­тые и сжато-изгибаемые элементы), а также конструкции второй группы при отсутствии сварных соединений.

В четвертую группу включены вспомогательные конструкции и элементы (связи, элементы фахверка, лестницы, ограждения и т.п.), а также конструкции третьей группы при отсутствии сварных соеди­нений.

Если для конструкций третьей и четвертой групп достаточно ог­раничиться требованиями к прочности при статических нагрузках, то для конструкций первой и второй групп важным является оценка сопротивления стали динамическим воздействиям и хрупкому раз­рушению.

В материалах для сварных конструкций обязательно следует оце­нивать свариваемость. Требования к элементам конструкций, не имеющим сварных соединений, могут быть снижены, так как отсут­ствие.полей сварочных напряжений, более низкая концентрация на­пряжений и другие факторы улучшают их работу.

В пределах каждой группы конструкций в зависимости от темпе­ратуры эксплуатации к сталям предъявляют требования по ударной вязкости при различных температурах.

В СНиП II-23-81 содержится перечень марок сталей в зависимости от группы конструкций и климатического района строительства.

 

8.9. Влияние температуры на стали.

Механические свойства стали при нагревании ее до температуры t = 200...250 °С практически не меняются (рис.2.2.2).

 

1 – модуль упругости; 2 – временное сопротивление; 3 – предел текучести

Рис.2.2.2. Механические свойства низкоуглеродистой стали

при изменении температуры

 

При температуре 250...300°С проч­ность стали не­сколько повышает­ся, пластичность снижается. Сталь становится более хрупкой. При этой температуре не следует сталь дефор­мировать или подвергать удар­ным воздействиям.

При нагревании выше 400°С резко падает предел текуче­сти и временное сопротивление, а при t = 600...650°С наступает температурная пластичность и сталь теряет свою несущую способ­ность.

При отрицательных температурах прочность стали возрастает, ударная вязкость падает и сталь становится более хрупкой (рис. 2.2.2).

Переход от вязкого разрушения к хрупкому проис­ходит, как правило, скачкообразно, в узком температурном диапазо­не, называемом порогом хладноломкости. Обычно в качестве порога хладноломкости принимают температуру, при которой ударная вязкость становится меньше оп­ределенного значения. Температуру, при которой ударная вязкость снижается до этого установленного значения, принимают за порог хладнолом­кости или критическую температуру перехода стали в хрупкое со­стояние. Данные о критических температурах хрупкости позво­ляют установить температурный интервал, при котором рекоменду­ется использовать в конструкциях ту или иную сталь.

8.10.Сортамент: общая характеристика сортамента

 

В строительных конструкциях применяют в основном прокатную сталь, поставляемую с металлургических заводов в виде профилей различной формы поперечного сечения. Для стальных конструкций используют листовую и профильную сталь. Профильную сталь под­разделяют на сортовую (круг, квадрат, полоса, уголки) и фасонную (двутавры, швеллеры и другие фасонные профили). Кроме того, ши­роко применяют вторичные профили: сварные, получаемые сваркой полос или листов, и гнутые, образованные холодной гибкой полос и листов.

Современный сортамент разработан в результате многолетнего развития металлических конструкций и теоретических исследований по выявлению рациональных типов профилей и частоты их града­ции.

Наиболее дешевы прокатные профили. Они непосредственно с металлургического завода идут на изготовление металлоконструкций. Для образования сварных и гнутых профилей требуется дополнительная операция - изготовление профиля из прокатного листа.

Сталь листовая. Листовую сталь широко применяют в строительстве. Ее классифицируют следующим образом.

Сталь толстолистовая (ГОСТ 19903—74). Сортамент этой стали включает листы толщиной от 4 до 160 мм, шириной от 600 до 3800 мм. Обычно применяемая ширина не превышает 2400 мм. Листовая горячекатаная сталь поставляется в листах длиной 6...12 м и толщиной до 160 мм или в рулонах толщиной от 1,2 до 12 мм и шириной от 500 до 2200 мм. В строительных конструкциях рекомендуется применять следующие толщины листовой стали: от 4 до 6 мм — через 1 мм, от 6 до 22 мм - через 2 мм и далее 25, 28, 30, 32, 36, 40, 50, 60, 80, 100 мм. Толстолистовую сталь используют в листовых конструкциях и сплошностенчатых элементах стержневых конструкций (балках, колоннах).

Сталь тонколистовая толщиной до 4 мм прокатывается холодным и горячим способами. Холоднокатаная сталь (ГОСТ 19904-74 с изм.) значительно дороже горячекатаной (ГОСТ 19903-74 с изм.). Тонкую листовую сталь применяют при изготовлении гнутых и штампованных тонкостенных профилей, для кровельных покрытий и т.п. Из холоднокатаной, оцинкованной, рулонной стали изготовляют профилированные настилы.

Сталь широкополосная универсальная (ГОСТ 8200-70) благодаря прокату между четырьмя валками имеет ровные края. Толщина такой стали от 6 до 60 мм, ширина от 200 до 1050 мм и длина от 5 до 12 м. Применение универсальной стали уменьшает отходы и снижает трудоемкость изготовления конструкций, так как не требует резки и выравнивания кромок строжкой.

Сталь полосовая (ГОСТ 103—76 с изм.) имеет толщину от 4 до 60 мм при ширине до 200 мм. Ее применяют для конструктивных деталей типа диафрагм и ребер жесткости, а также для изготовления гнутых профилей.

Рифленая сталь (ГОСТ 8568—77) толщиной от 2,5 до 8 мм с ромбическими или чечевицеобразными выступами, препятствующими скольжению при ходьбе, используется для настилов площадок.

Для площадок, где возможно скопление пыли, применяют просечно-вытяжную сталь (ГОСТ 8706-78) толщиной от 4,5 до 6
мм, получаемую холодной вытяжкой листа с предварительно
нанесенными разрезами.

Уголковые профили. Уголковые профили прокатывают в виде равнополочных (ГОСТ 8509-93) и неравнополочных (ГОСТ 8510-86) уголков. Сортамент уголков весьма обширен: от очень малых профилей с площадью сечения 1...1.5 см2 до мощных профилей с площадью се­чения 140 см2. Полки уголков имеют параллельные грани, что об­легчает конструирование. Тонкие уголки рациональны в элементах, работающих на осевое сжатие. Чем тоньше полки уголков, тем больше (при одинаковой площади сечения) радиус инерции i, от которого зависит несущая способность элемента.

Для растянутых элементов толщина уголков с точки зрения их несущей способности не имеет значения, но и в этом случае тонкие уголки предпочтительнее, поскольку более развитое сечение имеет большую жесткость и удобнее при транспортировке и монтаже. Ес­ли же полки уголков подвергаются изгибу, например при опирании на них плит перекрытий, то применяют толстые уголки. Уголки на­шли широкое применение в решетчатых конструкциях, прежде всего в фермах. Сечения элементов решетчатых конструкций компо­нуют часто из двух или четырех уголков.

Швеллеры. Геометрические характеристики сечения швеллеров определяют по номерам, которые соответствуют высоте стенки швеллера (в см). Сортамент (ГОСТ 8240-93) включает швел­леры от №5 до №40 с уклоном внутренних граней полок. Уклон внутренних граней полок затрудняет конструирование. В ГОСТ вхо­дят и швеллеры с параллельными гранями полок с буквой П в обо­значении, например 22П, сечения которых имеют лучшие расчет­ные характеристики и более конструктивны, так как упрощают бол­товые крепления к полкам.

Швеллеры используют в элементах, работающих на изгиб, на­пример в прогонах покрытий зданий. В конструкциях, работающих на осевые силы, швеллеры применяют в основном в виде составных сечений, соединенных планками или решеткой, например в колон­нах и поясах тяжелых ферм. Возможно применение швеллеров для коробчатых сечений со сваркой полок сплошными швами. Использование прерывистых шпоночных швов весьма про­блематично, поскольку помимо повышенной концентрации напря­жений в концах шпонок в таком сечении внутренняя полость не герметизирована, что может способствовать развитию коррозии.

Двутавры. Двутавр - наиболее рациональный профиль для элементов, рабо­тающих на изгиб.

В зависимости от геометрических параметров металлургическими заводами выпускаются несколько типов двутавров, которым соответ­ствуют определенные области применения.

Балки двутавровые обыкновенные (ГОСТ 8239-89), так же как и швеллеры, имеют уклон внутренних граней полок и обознача­ются номером, соответствующим их высоте в см. В сортамент входят профили от №10 до №60. Стенки круп­ных двутавров имеют толщину, составляющую 1/55 высоты дву­тавра. Чем тоньше стенка, тем выгоднее сечение балки при ра­боте ее на изгиб. Однако по условиям технологии прокатки у большинства двутавров стенки получаются значительно толще, чем это требуется по условию их устойчивости. Благодаря со­средоточению материала в полках двутавры имеют большую же­сткость относительно оси х, но небольшая ширина полок делает их недостаточно устойчивыми относительно оси у. Обыкновен­ные двутавры применяют в элементах, изгибаемых в плоскости стенки, а также в ветвях решетчатых колонн и различных опор.

Для обеспечения устойчивости относительно оси у эти двутавры должны иметь промежуточные закрепления.

Балки двутавровые широкополочные (ГОСТ 26020—83, СТО АСЧМ 20—93) имеют параллельные грани полок. Широкополочные двутавры прокатывают трех типов: нор­мальные двутавры (Б), широкополочные двутавры (Ш), колон­ные двутавры (К). Высота балочных профилей (Б) и (Ш) дос­тигает 1000 мм при отношении ширины полок к высоте от b/h=0,75 (при малых высотах) до b/h=0,3 (при больших высо­тах). Колонные профили (К) имеют отношение ширины полок к высоте, близкое к единице, что придает им устойчивость от­носительно оси у. Благодаря большей ширине полок широко­полочные двутавры имеют большую жесткость относительно оси у и могут применяться в конструкциях без дополнительных закреплений.

Конструктивные преимущества (параллельность граней полок и мощность сечений) позволяют применять широкополочные двутав­ры в виде самостоятельного элемента (балки, колонны, стержни тя­желых ферм), не требующего почти никакой обработки, что снижает трудоемкость изготовления конструкций в 2...3 раза.

Из широкополочных двутавров путем разрезки полки в продоль­ном направлении получают тавровые профили, удобные для применения в решетчатых конструкциях. По мере рас­ширения производства широкополочных двутавров применение обыкновенных двутавров сокращается.

Использование автоматической сварки позволяет изготовлять тонкостенные двутавры из листового проката с более выгодным рас­пределением материала по сечению. Сварные дву­тавры имеют свой сортамент.

Трубы. В трубах материал распределен на максимальном удалении от центра тяжести, поэтому из всех типов сечения трубчатое имеет наибольший удельный радиус инерции. Наиболее рацио­нально применение труб в элементах, работающих на осевое сжатие. Расход стали при этом снижается на 20...25 %, что покрывает повышение стоимости самих труб. Высокая коррозионная стойкость труб делают сооружения, выполненные из них, более долговечными.

Для строительных металлических конструкций применяют трубы круглого, квадратного и прямоугольного сечений.

Профилированный настил. Одним из видов гнутых профилей является профилированный настил, изготовляемый на специальных станах. Такой настил нашел широкое применение для площадок кровель и стеновых ограждений.

Профилированные листы различают по высоте и форме гофра. Для изготовления профилированного настила применяют листы толщиной от 0,6 до 1 мм. В зависимости от требуемой жесткости высота волны А составляет от 18 до 120 мм. Для обес­печения местной устойчивости полок и стенок профнастила устраи­вают продольные гофры.

Для обеспечения коррозионной стойкости профнастил изготов­ляют из оцинкованной стали. Профилированный настил поставляют по ГОСТ 24045-94 и техническим условиям отдельных заводов. При необходимости настил могут поставлять по индивидуальным зака­зам.

Наиболее распространенные типы настила для покрытий Н57-750-0,7 и Н75-750-0,8. Здесь первая цифра обозначает высоту волны, вторая — ширину настила, третья — толщину листа.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 3547; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.