Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Додавання однаково направлених гармонічних коливань однакової частоти

Часто матеріальна точка бере участь у двох і більше коливаннях. Наприклад, підвішена до стелі вагона на пружині кулька здійснює коливання відносно точки підвісу, яка у свою чергу коливається на ресорах вагона; таким чином, кулька буде здійснювати рух, який складається із двох коливань одного напрямку.

Нехай матеріальна точка бере участь у двох однаково направлених гармонічних коливаннях однакової частоти, але з різними амплітудами і початковими фазами:

,

.

Очевидно, результуюче коливання є також гармонічним і буде описуватись виразом

.

Одержати цей вираз можна аналітично, але легше скласти коливання векторним способом. Для цього у момент часу побудуємо векторну діаграму додавання цих коливань (рис. 5.5), відклавши амплітуди як вектори під кутом та до осі x.

Оскільки вектори амплітуд обертаються з однаковою кутовою швидкістю, рівною циклічній частоті ω, то кут між векторами і залишається рівним . Тоді результуючий вектор

.

З рис. 5.5 за теоремою косинусів маємо

або

. (5.18)

З рис. 5.5 видно, що початкову фазу результуючого коливання можна визначити за співвідношенням

.

Із (5.18) випливає, що А залежить від різниці початкових фаз , тому

.

Зокрема, коли , де , то ; коливання, що додаються, здійснюються «у фазі». Коли ж , то ; коливання здійснюються «у протифазі».

Якщо і близькі, то результуюча частота , і амплітуда результуючого коливання повільно і періодично змінюється. Це явище називається биттям.

 

<== предыдущая лекция | следующая лекция ==>
Енергія гармонічних коливань | Додавання взаємно перпендикулярних коливань
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1054; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.