Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лабораторная работа № 4

Наибольшее паросочетание

 

Цель работы:

1) Рассмотреть понятие двудольный граф.

2) Изучить понятие паросочетание.

3) Научиться определять наибольшее паросочетание.

Литература:

1) "Графы и их применение", Березина Л.Ю., М.: Просвещение, 1979г.

2) "Теория графов. Алгоритмический подход", Кристофидес II.

3) "Применение теории графов в программировании", Евстигнеев В.А. - М.: Наука, 1985г.

Порядок выполнения работы:

I Разработать схему алгоритмов основной программы и подпрограмм.

II Написать и отладить программу на языке Turbo Pascal.

Задание:

Имеется m мужчин и n женщин. Каждый мужчина указывает несколько (может, нуль; может, одну; может, много) женщин, на которых он согласен жениться. Мнение женщин не спрашивают. Заключить наибольшее количество моногамных браков.

Можно поставить эту задачу в терминах теории графов:

Дан двудольный граф Bm,n. Найти наибольшее паросочетание.

Краткие теоретические сведения:

Двудольным графом называется граф Г(, ), в котором множество вершинтакое, что каждое ребро () соединяет вершину с вершиной .

Паросочетанием называется множество ребер, не имеющих общих вершин.

На рис. а) показан пример паросочетания, а на рис. б) - пример наибольшего паросочетания.

1 2 3 4 5

 
 


a)

                   
         

 


1` 2` 3` 4` 5`

 

1 2 3 4 5

 
 


б)

                   
         

 


1` 2` 3` 4` 5`

Для решения задачи о наибольшем паросочетании применяется метод чередующихся цепей. Пусть М -паросочетание в двудольном графе. Цепь, в которую поочередно входят ребра из М (жирные) и из пе-М (тонкие) назовем чередующейся относительно М. Например, на рис. а) цепь (1, 1`, 2, 3`) -чередующаяся. Вершины, инцидентные ребрам, из М назовем насыщенными, прочие - ненасыщенными. Очевидно, что если в графе существует чередующаяся относительно М цепь с ненасыщенными концевыми вершинами (т.е. тонкими концевыми ребрами), то в ней тонких ребер на одно больше, чем жирных. Если цепь "перекрасить", т.е. сделать все жирные ребра тонкими, а тонкие - жирными, то число жирных ребер, а, следовательно, и паросочетание увеличатся на одно ребро. Чередующаяся относительно М цепь с ненасыщенными концевыми вершинами называется увеличивающей относительно М цепью.

Теорема:

Паросочетание М является наибольшим тогда и только тогда, когда нет увеличивающих относительно М цепей. Данная теорема служит основой для алгоритма нахождения наибольшего паросочетания.

Содержание отчета:

1) Составление алгоритмов.

2) Написание программы на языке Turbo Pascal.

3) Отладка программы.

Контрольные вопросы:

1) Какой граф называется двудольным?

2) Дайте понятие паросочетания.

3) Какая цепь графа называется чередующейся относительно М?

4) Какая цепь графа называется увеличивающейся относительно М?

5) Сформулируйте метод чередующихся цепей.

<== предыдущая лекция | следующая лекция ==>
Тема 7.4 Двудольные и изоморфные графы | Тема 7.5 Эйлеровы и гамильтоновы графы
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.