Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Технологические процессы обработки заготовок и деталей

Технологические процессы изменения технического состояния транспортных средств, используемые в автосервисе при оказании услуг

В автосервисе, в зависимости от метода выполнения различают следующие элементы технологических процессов:

- обработку (резанием, давлением, термическую, нанесение покрытий);

- сборку (сварку, пайку, склеивание, узловую и общую сборку);

- технический контроль.

Обработка металлов резанием, технологические процессы обработки металлов путём снятия стружки, осуществляемые режущими инструментами на металлорежущих станках с целью придания деталям заданных форм, размеров и качества поверхностных слоев. Основные виды обработки металлов резанием: точение, строгание, сверление, развёртывание, протягивание, фрезерование и зубофрезерование, шлифование, хонингование и др. широко используются при тюнинге автомобилей и мотоциклов. Закономерности обработки металлов резанием рассматриваются как результат взаимодействия системы станок — приспособление — инструмент — деталь (СПИД). Любой вид обработки металлов резанием характеризуется режимом резания, представляющим собой совокупность следующих основных элементов: скорость резания v, глубина резания t и подача s. Скорость резания — скорость инструмента или заготовки в направлении главного движения, в результате которого происходит отделение стружки от заготовки, подача — скорость в направлении движения подачи.

Обработка металлов давлением, группа технологических процессов, в результате которых изменяется форма металлической заготовки без нарушения её сплошности за счёт относительного смещения отдельных её частей, т. е. путём пластической деформации. Основные виды обработки металлов давлением: прокатка, прессование, волочение, ковка и штамповка. Обработка металлов давлением также применяется для улучшения качества поверхности.

Внедрение технологических процессов, основанных на обработке металлов давлением, по сравнению с другими видами металлообработки (литьё, обработка резанием) неуклонно расширяется, что объясняется уменьшением потерь металла, возможностью обеспечения высокого уровня механизации и автоматизации технологических процессов. Наиболее широко эти технологии применяются при изготовлении кузовных деталей автомобилей.

Обработкой металлов давлением могут быть получены изделия с постоянным или периодически изменяющимся поперечным сечением (прокатка, волочение, прессование) и штучные изделия разнообразных форм (ковка, штамповка), соответствующие по форме и размерам готовым деталям или незначительно отличающиеся от них. Штучные изделия обычно подвергаются обработке резанием. Объём удаляемого при этом металла зависит от степени приближения формы и размеров поковки или штамповки к форме и размерам готовой детали. В ряде случаев Обработкой металлов давлением получают изделия, не требующие обработки резанием (болты, винты, большинство изделий листовой штамповки).

Обработка металлов давлением может применяться не только для получения заготовок и деталей, но и как отделочная операция после обработки детали резанием (дорнование, обкатка роликами и шариками и т.п.) с целью уменьшения шероховатости поверхности, упрочнения поверхностных слоев детали и создания желательного распределения остаточных напряжений, при котором служебные свойства детали (например, сопротивление усталостному разрушению) улучшаются.

Термическая обработка металлов и сплавов производится с целью улучшения их служебных свойств.

Термическая обработка металлов, определенный временной цикл нагрева и охлаждения, которому подвергают металлы для изменения их физических свойств. Термообработка в обычном смысле этого термина проводится при температурах, не достигающих точки плавления. Процессы плавления и литья, оказывающие существенное влияние на свойства металла, в это понятие не включаются. Изменения физических свойств, вызываемые термической обработкой, обусловлены изменениями внутренней структуры и химических соотношений, происходящими в твердом материале. Циклы термической обработки представляют собой различные комбинации нагрева, выдерживания при определенной температуре и быстрого или медленного охлаждения, соответствующие тем структурным и химическим изменениям, которые требуется вызвать.

Отжиг - нагревание стального изделия до температуры 700-900°С (в зависимости от марки стали) и охлаждение вместе с печью.

Нормализация - нагрев стали до температуры 900°С с последующим охлаждением в нормальных условиях (на воздухе) для улучшения внутренней микроструктуры стали и повышения механических свойств и для подготовки ее к последующей термической обработке.

Закалка - придание стальному изделию высокой прочности и твердости. Но от закалки сталь становится более хрупкой. Этот недостаток устраняется в процессе отпуска стали. При закалке металл нагревают до высокой температуры, а затем быстро охлаждают в специальных охлаждающих средах (воде, масле и т.п.). Из одной и той же заготовки можно получить различные структуры и свойства, в зависимости от режима закалки изделия. Для достижения наилучших результатов стальные изделия постепенно нагревают до температуры 750-850°С. Затем разогретое изделие быстро охлаждают до температуры примерно 400°С.

Отпуск смягчает негативные явления при закалке, повышает вязкость и уменьшает хрупкость изделия. Еще отпуск устраняет большую часть внутренних напряжений, возникающих при закалке.

Химико-термическая обработка - нагрев и выдержка металлических (а в ряде случаев и неметаллических) материалов при высоких температурах в химически активных средах (твердых, жидких, газообразных).

В подавляющем большинстве случаев химико-термическую обработку проводят с целью обогащения поверхностных слоев изделий определенными элементами. Их называют, насыщающими элементами или компонентами насыщения.

В результате химико-термической обработки формируется диффузионный слой, т.е. изменяется химический состав, фазовый состав, структура и свойства поверхностных слоев. Изменение химического состава обуславливает изменения структуры и свойств диффузионного слоя.

В зависимости от насыщающего элемента различают следующие процессы химико-термической обработки:

однокомпонентные: цементация - насыщение углеродом; азотирование - насыщение азотом; алитирование - насыщение алюминием; хромирование - насыщение хромом; борирование - насыщение бором; силицирование - насыщение кремнием;

многокомпонентные: нитроцементация (цианирование, карбонитрация) - насыщение азотом и углеродом; боро- и хромоалитирование - насыщение, бором или хромом и алюминием, соответственно; хромосилицирование – насыщение хромом и кремнием и т.д

Широкое промышленное применение получили только традиционные процессы насыщения: азотирование, цементация, нитроцементация, цианирование. Цинкование, алитирование, борирование, хромирование, силицирование применяют значительно в меньшей мере.

На практике в подавляющем большинстве случаев химико-термической обработке подвергают сплавы на основе железа (стали и чугуны), реже - сплавы на основе тугоплавких металлов, твердые сплавы и еще реже сплавы цветных металлов, хотя практически все металлы могут образовывать диффузионные слои с подавляющим большинством химических элементов Периодической системы элементов Д.И. Менделеева.

ЛАКОКРАСОЧНЫЕ ПОКРЫТИЯ, образуются в результате пленкообразования (высыхания, отверждения) лакокрасочных материалов, нанесенных на поверхность (подложку) и получили самое широкое распространение в автомобилестроении при изготовлении, обслуживании, ремонте и тюнинге автомобилей и мотоциклов. Основные назначение: защита материалов от разрушения (например, металлов - от коррозии, дерева - от гниения) и декоративная отделка поверхности. По эксплуатационных свойствам лакокрасочные покрытия делятся на: атмосферо-, водо-, масло- и бензостойкие, химически стойкие, термостойкие, электроизоляционные, консервационные, а также специального назначения. К последним относятся, например, противообрастающие (препятствуют обрастанию подводных частей судов и гидротехн. сооружений морскими микроорганизмами), светоотражающие, светящиеся (способны к люминесценции в видимой области спектра при облучении светом или радиоактивным излучением), термоиндикаторные (изменяют цвет или яркость свечения при определенной температуре), огнезащитные, противошумные (звукоизолирующие). По внешний виду (степень глянца, волнистость поверхности, наличие дефектов) лакокрасочные покрытия принято подразделять на 7 классов. Для получения лакокрасочных покрытий применяют разнообразные лакокрасочные материалы (ЛКМ), различающиеся по составу и химический природе пленкообразователя. ЛКМ на основе термопластичных пленкообразователей - Битумные лаки, Эфироцеллюлозные лаки, ЛКМ на основе термореактивных пленкообразователей - Полиэфирные лаки, Полиуретановые лаки и др.; к ЛКМ на основе масел относятся олифы, масляные лаки, масляные краски, к модифицированным маслами - алкидные лаки. Используют лакокрасочные покрытия во всех отраслях народного хозяйства и в быту. Мировое производство ЛКМ составляет более 30 млн. т/год. Более 50% всех ЛКМ расходуется в машиностроении (из них 20% - в автомобилестроении), 25% - в строительной индустрии.

Большинство лакокрасочных покрытий получают нанесением ЛКМ в несколько слоев. Толщина однослойных лакокрасочных покрытий колеблется в пределах 3-30 мкм (для тиксотропных ЛКМ - до 200 мкм), многослойных - до 300 мкм. Для получения многослойных, например защитных, покрытий наносят несколько слоев разнородных ЛКМ (так называемые комплексные лакокрасочных покрытия), при этом каждый слой выполняет определенную функцию: нижний слой - грунт (получают нанесением грунтовки) обеспечивает адгезию комплексного покрытия к подложке, замедление электрохимический коррозии металла; промежуточный - шпатлевка (чаще применяют "второй грунт", или так называемой грунт-шпатлевку) - выравнивание поверхности (заполнение пор, мелких трещин и других дефектов); верхние, покровные, слои (эмали; иногда для повышения блеска последний слой - лак) придают декоративные и частично защитные свойства. При получении прозрачных покрытий лак наносят непосредственно на защищаемую поверхность. Технологический процесс получения комплексных лакокрасочных покрытий включает до несколько десятков операций, связанных с подготовкой поверхности, нанесением ЛКМ, их сушкой (отверждением) и промежуточной обработкой. Выбор технологического процесса зависит от типа ЛКМ и условий эксплуатации лакокрасочных покрытий, природы подложки (например, сталь, Аl, другие металлы и сплавы, древесина, строительные материалы), формы и габаритов окрашиваемого объекта. Качество подготовки окрашиваемой поверхности в значительной степени определяет адгезионную прочность лакокрасочного покрытия к подложке и его долговечность. Подготовка металлических поверхностей заключается в их очистке ручным или механизированным инструментом, пескоструйной либо дробеструйной обработкой, а также химический способами. Последние включают: 1) обезжиривание поверхности, например обработка водными растворами NaOH, а также Na2CO3, Na3PO4 или их смесей, содержащими ПАВ и др. добавки, органическое растворителями (например, бензином, уайтспиритом, три- или тетрахлорэтиленом) либо эмульсиями, состоящими из органическое растворителя и воды; 2) травление - удаление окалины, ржавчины и др. продуктов коррозии с поверхности (обычно после ее обезжиривания) действием, например, в течение 20-30 мин 20%-ной H2SO4 (70-80 °С) или 18-20%-ной НСl (30-40 °С), содержащими 1-3% ингибитора кислотной коррозии; 3) нанесение конверсионных слоев (изменение природы поверхности; используется при получении долговечных комплексных лакокрасочных покрытий): а) фосфатирование, которое заключается в образовании на поверхности стали пленки нерастворимых в воде трехзамещенныхортофосфатов, например Zn3(PO4)2.Fe3(PO4)2, в результате обработки металла водорастворимыми однозамещенными ортофосфатамиMn-Fe или Zn-Fe, например Mn(H2PO4)2-Fe(H2PO4)2, либо тонкого слоя Fe3(PO4)2 при обработке стали раствором NaH2PO4; б) оксидирование (чаще всего электрохимическим способом на аноде); 4) получение металлических подслоев - цинкование или кадмирование (обычно электрохимический способом на катоде). Обработку поверхности химическими методами обычно осуществляют окунанием или обливанием изделия рабочим раствором в условиях механизированной и автоматизированной конвейерной окраски. Химические методы обеспечивают высокое качество подготовки поверхности, но сопряжены с последующей промывкой водой и горячей сушкой поверхностей, а следовательно, с необходимостью очистки сточных вод.

Методы нанесения жидких ЛКМ.

1. Ручной (кистью, шпателем, валиком) - для окраски крупногабаритных изделий (строительные сооружения, некоторые промышленные конструкции), исправления дефектов, в быту. Используются ЛКМ естеств. сушки.

2. Валковый - механизированное нанесение ЛКМ с помощью системы валиков обычно на плоские изделия (листовой и рулонный прокат, полимерные пленки, щитовые элементы мебели, бумага, картон, металлич. фольга).

3. Окунание в ванну, заполненную ЛКМ. Традиционные (органоразбавляемые) ЛКМ удерживаются на поверхности после извлечения изделия из ванны вследствие смачивания. В случае водоразбавляемых ЛКМ обычно применяют окунание с электро-, хемо- и термоосаждением. В соответствии со знаком заряда поверхности окрашиваемого изделия различают ано- и катофоретическоеэлектроосаждение - частицы ЛКМ движутся в результате электрофореза к изделию, которое служит соответственно анодом или катодом. При катодном электроосаждении (не сопровождающемся окислением металла, как при осаждении на аноде) получают лакокрасочные покрытия, обладающие повышенной коррозионной стойкостью. Применение метода электемпературоосаждения позволяет хорошо защитить от коррозии острые углы и кромки изделия, сварные швы, внутр. полости, но нанести можно только один слой ЛКМ, т. к. первый слой, являющийся диэлектриком, препятствует электроосаждению второго. Однако этот метод можно сочетать с предварит. нанесением пористого осадка из суспензии др. пленкообразователя; через такой слой возможно электроосаж. При хемоосаждении. используют ЛКМ дисперсионного типа, содержащие окислители; при их взаимодействие с металлич. подложкой на ней создается высокая концентрация поливалентных ионов (Ме0: Ме+n), вызывающих коагуляцию приповерхностных слоев ЛКМ. При термоосаждении осадок образуется на нагретой поверхности; в этом случае в воднодисперсионный ЛКМ вводят специальную добавку ПАВ, теряющего растворимость при нагревании.

4. Струйный облив (налив) - окрашиваемые изделия проходят через "завесу" ЛКМ. Струйный облив применяют для окраски узлов и деталей различные машин и оборудования, налив - для окраски плоских изделий (например, листового металла, щитовых элементов мебели, фанеры). Методы облива и окунания применяют для нанесения ЛКМ на изделия обтекаемой формы с гладкой поверхностью, окрашиваемые в один цвет со всех сторон. Для получения лакокрасочного покрытия равномерной толщины без подтеков и наплывов окрашенные изделия выдерживают в парах растворителя, поступающих из сушильной камеры.

5. Распыление:

а) пневматическое - с помощью ручных или автоматических пистолетообразных краскораспылителей, ЛКМ с температурой от комнатной до 40-85 °С подается под давлением (200-600 кПа) очищенного воздуха; метод высокопроизводителен, обеспечивает хорошее качество лакокрасочных покрытий на поверхностях различной формы;

б) гидравлическое (безвоздушное), осуществляемое под давлением, создаваемым насосом (при 4-10 МПа в случае подогрева ЛКМ, при 10-25 МПа без подогрева);

в) аэрозольное - из баллончиков, заполненных ЛКМ и пропеллентом; применяют при подкраске автомашин, мотоциклов и др.

Существенный недостаток методов распыления - большие потери ЛКМ (в виде устойчивого аэрозоля, уносимого в вентиляцию, из-за оседания на стенах окрасочной камеры и в гидрофильтрах), достигающие 40% при пневмораспылении. С целью сокращения потерь (до 1-5%) используют распыление в электростатическом поле высокого напряжения (50-140 кВ): частицы ЛКМ в результате коронного разряда (от специального электрода) или контактного заряжания (от распылителя) приобретают заряд (обычно отрицательный) и осаждаются на окрашиваемом изделии, служащем электродом противоположного знака. Этим методом наносят многослойные лакокрасочные покрытия на металлы и даже неметаллы, например на древесину с влажностью не менее 8%, пластмассы с токопроводящим покрытием. Методы нанесения порошковых ЛКМ: насыпание (насеивание); напыление (с подогревом подложки и газопламенным или плазменным нагревом порошка, либо в электростатическом поле); нанесение в псевдоожиженном слое, например вихревом, вибрационном. Многие методы нанесения ЛКМ применяют при окраске изделий на конвейерных поточных линиях, что позволяет формировать лакокрасочные покрытия при повышенных температурах, а это обеспечивает их высокие технологические свойства. Получают также, так называемые градиентные лакокрасочные покрытия путем одноразового нанесения (обычно распылением) ЛКМ, содержащих смеси дисперсий, порошков или растворов термодинамически несовместимых пленкообразователей. Последние самопроизвольно расслаиваются при испарении общего растворителя или при нагревании выше температур текучести пленкообразователей. Вследствие избирательного смачивания подложки один пленко-образователь обогащает поверхностные слои лакокрасочного покрытия, второй - нижние (адгезионные). В результате возникает структура многослоевого (комплексного) лакокрасочного покрытия. Сушку (отверждение) нанесенных ЛКМ осуществляют при 15-25 °С (холодная, естественная сушка) и при повышенных температурах (горячая, "печная" сушка). Естественная сушка возможна при использовании ЛКМ на основе быстровысыхающих термопластичных пленкообразователей (например, перхлорвиниловых смол, нитратов целлюлозы) или пленкообразователей, имеющих ненасыщенные связи в молекулах, для которых отвердителями служат кислород воздуха или влага, например алкидные смолы и полиуретаны соответственно, а также при применении двухупаковочных ЛКМ (отвердитель в них добавляется перед нанесением). К последним относятся ЛКМ на основе, например, эпоксидных смол, отверждаемых ди- и полиаминами. Сушку ЛКМ в промышлености осуществляют обычно при 80-160 °С, порошковых и некоторых специальных ЛКМ - при 160-320 °С. В этих условиях ускоряется улетучивание растворитсля (обычно высококипящего) и происходит так называемое термоотверждение реакционноспособных пленкообразователей, например алкидных, меламино-алкидных, феноло-формальдегидных смол. Наиболее распространенные методы термоотвсрждения -конвективный (изделие обогревается циркулирующим горячим воздухом), терморадиационный (источник обогрева - ИК излучение) и индуктивный (изделие помещается в переменное электромагнитное поле). В процессе сушки протекают различные физических-химические процессы, приводящие к формированию лакокрасочного покрытия, например смачивание подложки, удаление органическое растворителя и воды, полимеризация и (или) поликонденсация в случае реакционноспособных пленкообразователей с образованием сетчатых полимеров. Формирование лакокрасочных покрытий из порошковых ЛКМ включает оплавление частиц пленкообразователя, слипание возникших капелек и смачивание ими подложки и иногда термоотверждение. Пленкообразование из воднодисперсионных ЛКМ завершается процессом аутогезии (слипания) полимерных частиц, протекающим выше так называемой минимальной температуры пленкообразования, близкой к температуре стеклования пленкообразователя.

Промежуточная обработка лакокрасочного покрытия:

- шлифование абразивными шкурками нижних слоев лакокрасочного покрытия для удаления посторонних включений, придания матовости и улучшения адгезии между слоями;

- полирование верхнего слоя с использованием, например, различных паст для придания лакокрасочному покрытию зеркального блеска. Пример технологической схемы окраски кузовов легковых автомобилей (перечислены операции в технологической последовательности): обезжиривание и фосфатирование поверхности, сушка и охлаждение, грунтование электрофорезной грунтовкой, отверждение грунтовки (180 °С, 30 мин), охлаждение, нанесение шумоизолирующего, герметизирующего и ингибирующего составов, нанесение эпоксидной грунтовки двумя слоями, отверждение (150 °С, 20 мин), охлаждение, шлифование грунтовки, протирка кузова и обдув воздухом, нанесение двух слоев алкидно-меламиновой эмали, сушка (130-140 °С, 30 мин).

Свойства покрытий определяются составом ЛКМ (типом пленкообразователя, пигментом и др.), а также структурой покрытий. Наиболее важные физических-механические характеристики лакокрасочного покрытия - адгезионная прочность к подложке, твердость, прочность при изгибе и ударе. Кроме того, лакокрасочные покрытия оцениваются на влагонепроницаемость, атмосферостойкость, химическую стойкость и др. защитные свойства, комплекс декоративных свойств, например прозрачность или укрывистость (непрозрачность), интенсивность и чистота цвета, степень блеска. Укрывистость достигается введением в ЛКМ наполнителей и пигментов. Последние могут выполнять также и другие функции: окрашивать, повышать защитные свойства (противокоррозионные) и придавать специальные свойства покрытиям (например, электропроводимость, теплоизолирующую способность). Объемное содержание пигментов в эмалях составляет <30%, в грунтовках - около 35%, а в шпатлевках - до 80%. Предельный "уровень" пигментирования зависит также от типа ЛКМ: в порошковых красках - 15-20%, а в воднодисперсионных - до 30%. Большинство ЛКМ содержат органическое растворители, поэтому производство лакокрасочных покрытий является взрыво- и пожароопасным. Кроме того, применяемые растворители токсичны (ПДК 5-740 мг/м3). После нанесения ЛКМ требуется обезвреживание растворителей, например термодинамически или каталитических окислением (дожиганием) отходов; при больших расходах ЛКМ и использовании дорогостоящих растворителей целесообразна их утилизация - поглощение из паровоздушной смеси (содержание растворителей не менее 3-5 г/м3) жидким или твердым (активированный уголь, цеолит) поглотителем с последующей регенерацией. В этом отношении преимущество имеют ЛКМ, не содержащие органическое растворителей (Водоэмульсионные краски, Порошковые краски), и ЛКМ с повышенным (до 70%) содержанием твердых веществ. В то же время, наилучшими защитными свойствами (на единицу толщины), как правило, обладают лакокрасочные покрытия из ЛКМ, используемых в виде растворов. Бездефектность лакокрасочного покрытия, улучшение смачивания подложки, устойчивость при хранении (предотвращение оседания пигментов) эмалей, водно- и органо-дисперсионных красок достигается введением в ЛКМ на стадии изготовления или перед нанесением функциональных добавок; например, рецептура воднодисперсионных красок обычно включает 5-7 таких добавок (диспергаторы, стабилизаторы, смачиватели, коалесценты, антивспениватели и др.).

Для контроля качества и долговечности лакокрасочных покрытий проводят их внешний осмотр и определяют с помощью приборов (на образцах) свойства:

- физико-механические (адгезия, эластичность, твердость и др.);

- декоративные и защитные (например, антикоррозионные свойства, атмосферостойкость, водопоглощение).

Долговечность современных атмосферостойких лакокрасочных покрытий (в умеренном климате) составляет 7-10 лет, водостойких - 3-5 лет, термостойкие выдерживают до 300 °С (кратковременно - 600 °С и более).

 

<== предыдущая лекция | следующая лекция ==>
Система автоматизированного проектирования тюнингаавтомобилей и мотоциклов | Технологические процессы сборки автомобилей и мотоциклов и их агрегатов
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 801; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.