Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Семантические сети

Первые сетевые модели появились в 60-е годы. Примерами их могут служить RX-коды, синтагматические цепи, семантические сети. В основе наиболее известной семантической модели лежит понятие сети, образованной помеченными вершинами и дугами. Вершины сети представляют некоторые сущности (объекты, события, процессы, явления), а дуги – отношения между сущностями, которые они связывают. По этой причине язык семантических сетей иногда называют реляционным. Наложив ограничения на описания вершин и дуг, можно получить сети различного вида. Если вершины не имеют собственной внутренней структуры, то соответствующие сети называют простыми сетями. Если вершины обладают некоторой структурой, то такие сети называются иерархическими сетями. На начальном этапе разработки систем ИИ использовались только простые сети, сейчас в большинстве приложений, использующих семантические сети, они являются иерархическими.

Отношения в сетях могут быть самого различного типа, что позволяет в достаточной мере обеспечить в семантической сети такой признак знаний, как связность. В общем случае это означает, что в виде семантической сети можно отобразить знания, заключенные в текстах на естественном языке.

Возьмем, например, следующую фразу[1]: «Рыбак (a1) сел на плот (a2), переехал на другой берег (a3) и взял корзину (a4) с рыбой (a5). Эти объекты связаны отношениями: сел на (r1), переехал (r2), взял (r3) и находиться (r4). Сеть, соответствующая этому тексту, показана на рис 2.2.

 

 
 
Рис 2.2. Пример семантической сети

 


Исходя из логики реального мира и принятого способа описаний ситуаций в этом мире, можно считать данными и некоторые другие отношения, явно не присутствующие в исходном тексте. Эти дополнительные отношения показаны на рис.2.2 пунктиром. Пополненный текст:” Рыбак сел на плот и на плоту переехал на другой берег. На другом берегу находилась рыба. Рыба была в корзине. Рыбак взял корзину с рыбой”.

Следует подчеркнуть одно важное обстоятельство. Как показали исследования, в языках индоевропейской группы имеется не более 200 различных не сводимых друг к другу отношений. Комбинации этих базовых отношений позволяют выразить остальные отношения, фиксируемые в текстах на естественном языке. Это обстоятельство лежит в основе так называемого ситуационного управления. Кроме того, конечное множество базовых отношений позволяет надеяться, что в базах знаний можно представить любую предметную область и, более того, осуществить автоматическое построение семантических сетей непосредственно из текста.

Основное отличие иерархических семантических сетей от простых состоит в возможности разделить сеть на подсети-пространства и устанавливать соотношение не только между вершинами, но и между пространствами. Все вершины и дуги являются элементами, по крайней мере, одного пространства. Отметим, что понятие пространства аналогично понятию скобок в математической нотации. Различные пространства, существующие в сети, могут быть упорядочены в виде дерева пространств, вершинам которого соответствуют пространства, а дугам – отношения «видимости». На рис 2.3 приведен пример дерева пространств, в соответствии с которым, например, из пространства-потомка P6 видимы все вершины и дуги, лежащие в пространствах-предках P4, P2 и P0, а остальные пространства «невидимы».

Отношение «видимости» позволяет группировать пространства в упорядоченные множества- «перспективы».Перспектива обычно используется для ограничения сетевых сущностей, «видимых» некоторой процедурой, работающей с сетью.

Рис. 2.3. Дерево пространств.

 

 
 

Частным случаем семантических сетей являются сценарии или однородные семантические сети[7,10]. Это сети, объекты которых связаны единственным отношением строгого или нестрогого порядка с различной семантикой. Если, например, объектами-понятиями будут работы (или отдельные операции), а единственным отношением строгого порядка будет отношение следования, то мы придем к хорошо известному сетевому графику комплекса работ с так называемым французским представлением. Очевидно, что сценарии являются удобным средством составления планов.

 

Рис. 2.4. Связь БД и БЗ

 

На примере семантической сети общего вида можно установить различие между базой банных и базой знаний (см. рис.2.4). Предметная область есть множество допустимых состояний своих компонентов. Представленное чрез общие понятия и отношения между ними, это множество образует базу знаний – в виде так называемой интенсиональной семантической сети. С другой стороны, в зависимости от ситуации компоненты предметной области будут иметь конкретные значения, свойства, характеристики. Все эти конкретные данные о предметной области будут отображаться в так называемой экстенсиональной семантической сети или базе данных сетевой структуры.

Несколько слов о терминах «интенсиональный» и «экстенсиональный», заим-ствованных из семантики- науки о знаковых системах.

С9 ТОК ОЗНАЧАТЬ C4 TOK САМЫЙ AGT С1 MOD НУЛЬ LOG С3 OBJ С6 С5 ТОК МАЛЫЙ MODAL С7 MOD C4 C1 TOK НОК C6 TOK ЧИСЛО MOD НУЛЬ MOD C5 C2 TOK ОБЩЕЕ КРАТНОЕ C7 КОЛИЧЕСТВО PRES MOK NIL AUX C8 C3 TO СРЕДИ С8 TOK МЕРА POST C2 MOD NIL
Интенсионал- это общие понятия и отношения, которые характеризуют множество объектов, предметов, явлений. Экстенсионалом называют конкретные характеристики каждого элемента этого множества понятий и отношений. Например, понятие «легковая машина» с родовидовыми отношениями «кузов», «двигатель», «управление» и т.п. будет интенсионалом по отношению к множеству экстенсионала – марок легковых автомашин («волга», «жигули», «москвич», «запорожец») с их конкретными характеристиками. В свою очередь, если в качестве общего понятия-интенсионала выступают, например. «жигули», то экстенсионалами могут быть их модели (2101,21301,2303,2306 и т.п.) с конкретными характеристиками. Т.о., сами понятия интенсионала и экстенсионала относительны.

 


Рис 2.5. Семантическая сеть предложения (слева) и

структура данных семантической сети (справа).

 

В ЭВМ семантическая сеть реализуется в виде внутримашинной структуры данных, которая используется для представления отдельных слов и семантики. Например, семантическую сеть «НОК – это наименьшее общее кратное» на основе результатов структурного анализа можно переписать в виде структуры данных семантической сети[10], как показано на рис 2.5. Здесь С1, С2,…, С8 – узлы семантической сети, которые являются указателями списковой структуры; ТОК – печать соответствующей семантики, причем некоторое активное слово записывается в исходной форме; MODAL – время (оценка) и спряжение глагола; MOD – модифицированные слова; POST c помощью союза показывает модифицированное слово.

Положительная сторона представления знаний семантическими сетями заключается в том, что это весьма простой и понятный способ описания на основании отношений между элементами (узлами и дугами). Однако с увеличением размеров сети существенно увеличивается время поиска по сравнению со способами, не имеющими стратегии. Кроме того, им присуща проблема гарантии пригодности результатов вывода, включающая также проблему наследования свойств. Вернуться

<== предыдущая лекция | следующая лекция ==>
Представление знаний в системах ИИ | Фреймовые модели
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1198; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.