Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Горючие газы—заменители ацетилена

Газы—заменители ацетилена могут быть использованы в тех процессах газопламенной обработки, для которых не требуется слишком высокая температура подогревающего пламени. К таким процессам относятся: сварка легкоплавких металлов (алюминия, магния н их сплавов, свинца), высоко– и низкотемпературная пайка, сварка тонколистовой стали, кислородная разделительная и поверхностная резка. Широкое применение газы-заменители находят при кислородной разделительной резке, где температура подогревающего пламени не влияет на характер протекания процесса, а лишь сказывается на длительности начального подогрева металла перед резкой. Поэтому для резки могут использоваться все газы-заменители, у которых температура пламени при сгорании в смеси с кислородом не ниже 1800—12000С, а теплотворная способность не менее 10 000 кДж/м3.

Газы-заменители, как правило, дешевле ацетилена, недефицитны и доступны для использования в районах их производства. Использование дешевых горючих газов вместо ацетилена значительно снижает стоимость газопламенной обработки и упрощает организацию работ.

Эффективность и условия использования газов-заменителей при обработке материалов газокислородным пламенем в основном определяются следующими их свойствами: низшей тепловой способностью, плотностью, температурой воспламенения и скоростью горения в смеси с кислородом; соотношением между кислородом и горючим в смеси, эффективной тепловой мощностью пламени; температурой пламени при сгорании в смеси с кислородом; удобствами и безопасностью при получении, транспортировке и использовании.

Рассмотрим некоторые, наиболее важные свойства газов-заменителей.

Низшая теплотворная способность представляет собой количество теплоты, выделяющееся при полном сгорании единицы объема или массы горючего. Для чистых углеводородов и водорода теплотворная способность является физической константой.

Для сложных газовых смесей известного состава теплотворная способность может быть подсчитана по теплотворной способности содержащихся составных частей.

Эффективная мощность пламени — это количество теплоты, вводимой в нагреваемый металл в единицу времени (кал/с). В наибольшей степени эффективная мощность пламени для данного горючего газа зависит от двух величин: соотношения кислорода и горючего газа в смеси и расхода горючего газа. Соотношение кислорода Vк и горючего газа Vг,- в смеси для различных горючих принимают следующим:

 

Коэффициент замены ацетилена — отношение расхода газа-заменителя V3 к расходу ацетилена Vа, при равном тепловом воздействии на нагреваемый металл —обозначается y=V3 /Vа.. Для определения значения коэффициента замены пользуются графиками по которым находят расход газа-заменителя для условий, когда он при сгорании в смеси с кислородом обеспечивает эффективную мощность пламени, равною таковой для ацетилено-кислородного пламени состава: кислород/ацетилен = 1,15.

 

 

Рассмотрим основные свойства и области применения газов-заменителей.

Водород. В нормальных условиях водород представляет собой газ без цвета и запаха. Это взрывоопасный газ, способный проникать через малейшие неплотности в окружающую среду, образуя взрывоопасные смеси с воздухом. Поэтому при работе с водородом необходимо обращать особое внимание на герметичность аппаратуры и газовых коммуникаций.

Температура водородно-кислородного пламени 2000—2100оС. Его можно применять для получения высокочистых металлов в газовом пламени и для безокислительной пайки сталей.

Природный газ (метан). Состав природного газа определяется характером газового месторождения. Температура пламени при сгорании газа в смеси с кислородом равна 2100—2200° С.

Природный газ применяется при разделительной и поверхностной кислородной резке стали, сварке стали толщиной до 4—5 мм, сварке легкоплавких металлов и сплавов, пайке н других процессах газопламенной обработки, допускающих использование пламени с более низкой температурой, чем кислородно-ацетиленовое.

Пропан технический и пропанобутановая смесь. Эти газы — побочные продукты при переработке нефти. По ГОСТ 10196—62 пропан техническим состоит главным образом из пропана или из пропана и пропилена количество которых в сумме должно быть не менее 93 %. Кроме того, в нем содержится в сумме не более 4% этана, этилена и не более 3% бутана и бутилена.

Температура пламени пропана и пропанобутановой смеси при сгорании в смеси с кислородом равна 2400—25000 С и при дополнительном подогреве смеси в мундштуке может достигать 2700оС. При повышении давления или при понижении температуры пропан, бутан и их смеси переходят в жидкое состояние, их называют тогда сжиженными газами. При температуре 20° С и давлении 760 мм рт. ст. они находятся в газообразном состоянии.

Сжиженные газы широко применяются в качестве заменителей ацетилена. Пропан, бутан и их смеси можно использовать при сварке стали толщиной до 6 мм, кислородной и кислородно-флюсовой резке (разделительной и поверхностной) сталей, наплавки и других подобных процессах.

При использовании технического пропана отбор его из газовой фазы баллона можно производить при температурах окружающей среды до минус 250 С. При пропанобутановой смеси это можно делать при окружающей температуре не ниже - +80 С. При более низких температурах применяют общий подогрев баллонов до 10—200 С.

При разделительной резке, сварке цветных металлов, пламенной закалке и папке для замены 1 т карбида кальция (что эквивалентно примерно 235 м3 ацетилена) требуется 0,3 т сжиженного газа. При поверхностной кислородной резке, сварке черных металлов, металлизации и других процессах 1 т карбида кальция заменяется 0,5 т сжиженного газа.

Коксовый и сланцевый газы. Коксовый газ получают в процессе коксования каменного угля. Сланцевый газ получают при газификации горючих сланцев.

Коксовый и сланцевый газы к постам газопламенной обработки подают по трубопроводу. Их используют при сварке легкоплавких металлов, пайке, разделительной и поверхностной кислородной и кислородно-флюсовой резке и других процессах, для которых достаточна температура пламени 20000 С.

Городской газ. Плотность городского газа 0,84—1,05 кг/м3, температура газокислородного пламени 20000 С. Области применения те же, что и для коксового.

Керосин и бензин. Температура газокислородного пламени керосин 2400–2450 бензин 2500–2600 0 С.

Керосин более безопасен в работе. Применяется только осветительный керосин по ГОСТ 4753—68. Перед заливкой в бачок керосин рекомендуется профильтровать через слой войлока и кускового едкого натра.NаОН для очистки от механических частиц, остатков смолистых веществ и обезвоживания. Керосин используют при резке стали, бензин — при резке под водой. Применение этилированного бензина запрещается.

Пиролизный и нефтяной газы. Это смеси газообразных продуктов термического разложения нефти, нефтепродуктов и мазута при температуре 720—7400 С в ретортах. Выход газа составляет 0,35 —0,4 м3 на 1 кг нефти. Состав газа зависит от состава нефти и режима ее переработки. При наполнении в баллоны газ находится частично в сжиженном состоянии. При отборе газа состав его изменяется вследствие испарения в первую очередь более летучих компонентов. Для выравнивания состава газа и предупреждения частичной конденсации в трубопроводах и шлангах перед горелкой иногда приходится устанавливать промежуточный ресивер емкостью 40 дм3, в котором газ находится под избыточным давлением 0,3—0,4 МПа (3—4 кгс/см2); из ресивера газ через регулятор давления поступает в горелку или резак. Области применения этих газов те же, что и при использовании пропана и пропанобутановых смесей. Ввиду более низкой температуры пламени пиролизный и нефтяной газы можно использовать для сварки стали толщиной не более 3 мм.

 

<== предыдущая лекция | следующая лекция ==>
Полное сгорание ацетилена происходит по реакции | Ацетиленовые генераторы
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 4363; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.