КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
A) Если исключение ребра {x,y} приводит к тому, что у вершины x или y нет двух инцидентных ребер на данном маршруте, тогда {x,y} необходимо включить
б) Если включение ребра {x,y} приводит к тому, что у вершины x или y будет более 2-х инцидентных ребер на данном маршруте или образуется цикл, не являющийся искомым маршрутом, ребро {x,y} необходимо исключить.
Комбинированный метод ветвей и границ. При разветвлении с учетом правил II вычисляется нижняя граница каждого сына данного узла n. Если нижняя граница какого-нибудь из них (или обоих) окажется не ниже, чем найденное на данный момент наилучшее решение с min стоимостью, этот сын отсекается. Если ни одного из сыновей отсечь нельзя, применяется эвристический прием – рассмотрение сначала сына с наименьшей нижней границей.
Пример 3: Построим дерево решений для задачи из примера 1 и найдем оптимальное решение методом ветвей и границ.
Ребра для ветвлений выбираем в лексикографическом порядке: ab, ac, ad, ae, bc, bd, be, cd, ce, de, … Узел А: Все маршруты графа. Нижняя грань стоимости 17,5 (см. пример 2). Узел В: Маршруты, включающие ab. Два ребра наименьшей стоимости для узла a: ab, ad стоят 3 и 2; для узла b: ab, be стоят 3 и 3; для узла c: bc, ac стоят 4 и 4; для узла d: ad, cd стоят 2 и 5; для узла e: be, de стоят 3 и 6. Нижняя граница стоимости любого маршрута узла В:. Узел С: маршруты не включающие ab Два ребра наименьшей стоимости для a: ad, ac стоят 2 и 4 (ab брать нельзя); для b: be, bc стоят 3 и 4; для c: bc, ac стоят 4 и 4; для d: ad, cd стоят 2 и 5; для e: be, de стоят 3 и 6. Нижняя граница для узла С: 18.5. Так как пока полностью не найдено ни одно решение, чтобы в сравнении с ним отсечь В или С, рассмотрим сыновей обоих узлов, причем вначале В, так как его граница меньше. Узел D: маршруты, включающие ab и включающие ac. Согласно правилу II, в них нельзя включать ad и ae, иначе d (a)>2. Значит, для данного узла необходимо также и. Два ребра наименьшей стоимости для a: ab, ac стоят 3 и 4 (ab, ac обязательны); для b: ab,be стоят 3 и 3 (ab обязательно); для c: ac, bc стоят 4 и 4 (ac обязательно); для d: bd, cd стоят 6 и 5 (ad брать нельзя); для e: be, de стоят 3 и 6 (ae брать нельзя). Нижняя граница для узла D: 20.5. Узел E: маршруты, включающие ab, но не включающие ас. Два ребра наименьшей стоимости для а: аb и ad стоят 3 и 2 (аb обязательно, ас включать нельзя); для в: аb и bе стоят 3 и 3; для с: bс и сd стоят 4 и 5 (ас включать нельзя); для d: ad и cd стоят 2 и 5; для е: bс и de стоят 3 и 6. Нижняя граница для узла Е: 18. Пока ни одно из решений не найдено, нельзя в сравнении с ним отсечь ни D ни Е. Начнем рассматривать сыновей узла наименьшей стоимости из них: Е. Узел F: маршруты, включающие ab, но не включающие и включающие ad. Согласно правилу II, не может включаться ае, иначе d(а)>2. Следовательно, для данного узла также требуется. Два ребра наименьшей стоимости для а: ab и аd стоят 3 и 2 для b: аb и bе стоят 3 и 3 для с: сb и сd стоят 4 и 5 для d: ad и сd стоят 2 и 5 для e: be и de стоят 3 и 6 Нижняя границ для F: 18. Узел G: маршруты, для которых аb,. Тогда необходимо ае включить, иначе d(a)= 1. для а: ab и ae стоят 3 и 7; для b: ab и be стоят 3 и 3; для c: bc и cd стоят 4 и 5; для d: cd и bd стоят 5 и 6; для e: ae и be стоят 7 и 3. Нижняя граница для G: 23. Так как не найдено ни одного из окончательных решений, в сравнении с которым можно отсечь F или G, рассмотрим сыновей обоих узлов, начнем с F. Узел H: маршруты, для которых ab,, ad,, bc. Применим правило II. Необходимо также иначе d(b)>2. Необходимо ce и de, иначе d(e)<2. Так как включены bc и ce, требуется, иначе d(c)> 2. Таким образом, все условия для узла H: ab,, ad,, bc,,, ce, de,. Они определяют единственный маршрут ab, bc, ce, ed, da. Стоимость этого маршрута 3+4+8+6+2=23 – одно из окончательных решений. Узел I: маршруты, для которых ab,, ad,,. Применим правило II. Необходимо cd и ce, иначе d(c) <2. Так как есть ad и cd, значит, требуется и, иначе d(d) >2. Учитывая, ce включаем be, иначе d(е)< 2. Таким образом, все условия для узла I: ab,, ad,,, cd, ce,,, be. Они определяют единственный маршрут ab, be, ec, cd, da. Стоимость этого маршрута 3+3+8+5+2=21 – окончательное решение.
После рассмотрения I со стоимостью 21 отсекается узел H (стоимость 23), отсекается узел G все его потомки, так как их наименьшая стоимость равна 23, отсекается узел D и все его потомки, так как их нижняя граница стоимости 20.5, а с учетом того, что стоимость – целое число, она равна 21. Это эквивалентно уже найденному решению I. Наилучшее решение на этом этапе I со стоимостью 21.
Правая ветвь дерева строится аналогично (см. рис.3). Оценивается С – нижняя граница = 18,5. J – нижняя граница = 18,5 (см. пример 3). К – нижняя граница =21 (отсекается, так как это эквивалентно I). L - нижняя граница =18,5. М - нижняя граница =23,5 (отсекается, так как стоимость больше, чем у I). N – стоимость окончательного маршрута acbeda =19. Р - стоимость окончательного маршрута acbeda =23 – отсекается, так как стоимость больше, чем у N. После нахождения N (стоимость 19), отвергается маршрут I (стоимость 21).
Ответ: маршрут наименьшей стоимости acbeda, стоимости 19.
Дата добавления: 2014-01-04; Просмотров: 511; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |