Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вандерваальсовы силы

Взаимодействие между молекулами. Комплексные соединения

Вопросы

  1. В чем состоит особенность статического режима астатической САУ?
  2. Можно ли добиться астатизма без включения интегрирующего звена?
  3. Как отражается на динамических свойства САУ величина частоты среза?
  4. Как отражается на динамических свойства САУ наклон высокочастотного участка ЛАЧХ?
  5. Как отражается на динамических свойства САУ наклон низкочастотного участка ЛАЧХ?
  6. Что называется демпфированием с поднятием высоких частот?
  7. Что называется демпфированием с подавлением высоких частот?
  8. Что называется демпфированием с подавлением средних частот?
  9. Как изменятся динамические и статические характеристики САР при включении в регулятор интегрирующего звена?
  10. Как изменятся динамические и статические характеристики САР при включении в регулятор астатического звена?
  11. Как изменятся динамические и статические характеристики САР при включении в регулятор форсирующего звена?
  12. Как осуществляется последовательная коррекция по задающему воздействию?
  13. Как осуществляется коррекция с использованием неединичной обратной связи?
  14. В чем общий недостаток астатических САУ без интегрирующего звена?
  15. Как подобрать передаточную функцию корректирующего устройства при компенсации возмущающего воздействия?

 

 

 

В предыдущей главе было рассмотрено взаимодействие атомов с образованием молекул, а также представлены структуры и некоторые свойства молекул. Настоящая глава посвящена взаимодействию молекул.

При сближении молекул появляется притяжение, что обусловли­вает возникновение конденсированного состояния вещества. К основ­ным видам взаимодействия молекул следует отнести вандерваальсовы силы, водородные связи и донорно-акцепторное взаимодействие.

 

В 1873 г. голландский ученый И. Ван-дер-Ваальс предположил, что существуют силы, обусловливающие притяжение между молеку­лами. Эти силы позднее получили название вандерваальсовых сил. Они включают в себя три составляющие: диполь-дипольное, индукционное и дисперсионное взаимодействия.

а – диполь-дипольное взаимодействие; б - индукционное взаимодействие;

в – дисперсионное взаимодействие

 

Рисунок 6.1 – Вандерваальсовы взаимодействия молекул

 

6.1.1 Диполь-дипольное взаимо­действие. При сближении по­лярных молекул они ориенти­руются таким образом, чтобы положительная сторона одного диполя была ориентирована к отрицательной стороне другого диполя (рисунок 6.1, а).

Возникающее между диполя­ми взаимодействие называется диполь-дипольным или ориентационным. Энергия диполь-дипольного взаимодействия про­порциональна электрическому моменту диполя в четвертой сте­пени и обратно пропорциональна расстоянию между центрами диполей в шестой степени и абсолют­ной температуре в первой степени.

6.1.2 Индукционное взаимодействие. Диполи могут воздействовать на неполярные молекулы, превращая их в индуцированные (наве­денные) диполи (рисунок 6.1, б). Между постоянными и наведенными ди­полями возникает притяжение, энергия которого пропорциональна электрическому моменту диполя во второй степени и обратно про­порциональна расстоянию между центрами молекул в шестой степе­ни. Энергия индукционного взаимодействия возрастает с увеличени­ем поляризуемости молекул, т.е. способности молекулы к об­разованию диполя под воздействием электрического поля. Величину поляризуемости выражают в единицах объема. Поляризуемость в од­нотипных молекулах растет с увеличением размера молекул (таблища 6.1). Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

6.1.3 Дисперсионное притяжение. В любой молекуле возникают флуктуации электрической плотности, в результате чего появляются мгновенные диполи, которые в свою очередь индуцируют мгновен­ные диполи у соседних молекул (рисунок 6.1, в). Движение мгновенных диполей становится согласованным, их появление и распад происхо­дит синхронно. В результате взаимодействия мгновенных диполей энергия системы понижается. Энергия дисперсионного взаимодей­ствия пропорциональна поляризуемости молекул и обратно пропорциональна расстоянию между центрами частиц. Для неполярных молекул дисперсное взаимодействие является единственной составляющей вандерваальсовых сил (таблица 6.1).

 

Таблица 6.1 - Вклад отдельных составляющих в энергию молекулярного взаимодействия

Вещество Электри- ческий момент диполя, D Поляризу- Емость, м3*1030 Энергия взаимодействия, кДж/моль Темпера- тура кипения, К
Ориентации- онная Индукции- онная Десперси- онная суммарная
H2 Ar Xe HCl HBr Hl NH3 1,03 0,78 0,38 1,52 0,8 1,64 4,16 2,64 3,62 5,42 2,23 3,3 1,1 0,6 13,3 1,0 0,70 0,3 1,5 0,17 8,5 18,4 16,8 28,5 60,6 14,7 0,17 8,5 18,4 21,1 30,3 61,5 29,5 20,2 239,6

 

6.1.4 Энергия вандерваальсова взаимодействия. Энергия всех видов вандерваальсова взаимодействия обратно пропорциональна расстоя­нию между центрами молекул в шестой степени.

При сильном сближении молекул проявляются силы отталкива­ния между ними, которые обратно пропорциональны расстоянию между молекулами в двенадцатой степени. Поэтому зависимость ре­зультирующей энергии вандерваальсова взаимодействия EB от рас­стояния между молекулами, IB, выражается уравнением

, (6.1)

 

где а и b — постоянные.

Минимальная энергия системы обеспечивается при расстояниях между центрами молекул 0,4÷0,5 нм, т.е. существенно больше длины химической связи.

Как видно из таблицы 6.1, с увеличением размера молекул в ряду Аг—Хе и НС1—HI растет их поляризуемость и энергия дисперсион­ного притяжения. Ориентационное взаимодействие вносит значи­тельный вклад в вандерваальсовы силы лишь в случае молекул с большим электрическим моментом диполя. С увеличением сум­марной энергии межмолекулярного взаимодействия возрастет температура кипения жидкостей, а также теплота их испарения. Суммарная энергия вандерваальсового взаимодействия молекул на 1—2 порядка ниже энергии химических связей.

Итак, между молекулами возникают относительно слабые вандерваальсовы взаимодействия, включающие дисперсионные силы, а для полярных молекул и диполь-дипольное притяжение и индукци­онные взаимодействия.

 

 

<== предыдущая лекция | следующая лекция ==>
 | Водородная связь. 6.2.1 Общие понятия.Химическая связь, образованная положитель­но поляризованным водородом молекулы А—Н (или полярной груп­пы—А-Н) и электроотрицательным
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 573; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.