КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные требования к установкам. Основные типоразмеры
6.2.1. Конструкции ступеней насосов Скважинные центробежные насосы являются многоступенчатыми машинами. Это обусловлено в первую очередь малыми значениями напора, создаваемым одной ступенью (рабочим колесом и направляющим аппаратом). В свою очередь небольшие значения напора одной ступени (от 3 до 6-7 м водяного столба) определяются малыми величинами внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной колонны и размерами применяемого скважинного оборудования — кабеля, погружного двигателя и т.д. Конструкция скважинного центробежного насоса может быть обычной и износостойкой, а также повышенной коррозионной стойкости. Диаметры и состав узлов насоса в основном одинаковы для всех исполнений насоса. Скважинный центробежный насос обычного исполнения предназначен для отбора из скважины жидкости с содержанием воды до 99 %. Механических примесей откачиваемой жидкости должно быть не более 0,01 массовых % (или 0,1 г/л), при этом твердость механических примесей не должна превышать 5 баллов по Моосу; сероводорода — не более 0,001 %. По требованиям технических условий заводов-изготовителей, содержание свободного газа на приеме насоса не должно превышать 25 %. Центробежный насос коррозионностойкого исполнения предназначен для работы при содержании в откачиваемой пластовой жидкости сероводорода до 0,125 % (до 1,25 г/л). Износостойкое исполнение позволяет откачивать жидкость с содержанием механических примесей до 0,5 г/л. Рабочим органом скважинного центробежного насоса служит ступень насосная (СН) с цилиндрическими (ЦЛ) или наклонно-цилиндрическими лопатками (НЦЛ), состоящая из рабочего колеса и направляющего аппарата (рис. 6.4.). Ступени с ЦЛ применяются на номинальные подачи до 125 м3/сут (включительно) в насосах с наружным диаметром 86 и 92 мм, до 160 м3/сут в насосах с диаметром 103 мм и до 250 м3/сут в насосах с диаметром 114 мм. Ступени с НЦЛ применяются в насосах с большей подачей. В области своего применения ступени с НЦЛ имеют более высокий КПД и более, чем в 1,5 раза увеличенную подачу, чем ступени с ЦЛ в тех же диаметральных габаритах. Наружный диаметр ступеней 70, 80, 90 и 100 мм. Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук. Для возможности сборки ЭЦН с таким количеством ступеней и разгрузки вала от осевой силы применяется плавающее рабочее колесо. Рабочее колесо в насосе не фиксируется на валу в осевом направлении и удерживается от проворота призматической шпонкой. Колесо может свободно перемещаться в осевом направлении в промежутке, ограниченном опорными поверхностями направляющих аппаратов. Колесо опирается на индивидуальную для каждой СН осевую опору, состоящую из опорного бурта направляющего аппарата предыдущей ступени и антифрикционной износостойкой шайбы, запрессованной в расточку рабочего колеса; при этом утечка через переднее уплотнение колеса практически равна нулю. Но механический КПД ступени с плавающим рабочим колесом снижается из-за потерь трения в нижней опоре колеса. Величина этих потерь в первом приближении пропорциональна осевой силе, действующей на рабочее колесо ступени. Относительная характеристика ступени насоса представлена на рис 6.5. Под относительной величиной понимается отношение фактической величины к соответствующей величине на оптимальном режиме, при котором КПД достигает максимального значения. На режимах, примерно на 10 % превышающих подачу нулевой осевой силы, рабочее колесо СН может «всплыть», т.е. переместиться вверх вплоть до упора, выполненного в виде верхней осевой опоры, состоящей из опорного бурта на направляющем аппарате и шайбы, запрессованной в расточку рабочего колеса. Всплытие рабочего колеса сопровождается скачкообразным снижением напора, КПД и резким повышение потребляемой мощности при увеличении подачи. При уменьшении подачи от режима открытой задвижки рабочее колесо может опускаться в нижнее положение при значениях относительной подачи q = 0,9-1,0. Наиболее распространенный в настоящее время способ разгрузки колеса от осевой силы в ступенях с НЦЛ — создание при помощи выполненного у колеса второго верхнего уплотнения камеры за ведущим диском колеса, в котором давление с помощью отверстий в ведущем диске уравнивается с давлением у входа в колесо (рис. 6.6,а). Разгрузка рабочего колеса позволяет существенно снизить осевую силу. Такие ступени по сравнению с аналогичными ступенями с неразгруженными рабочими колесами имеют ряд преимуществ: повышенный ресурс работы индивидуальной нижней опоры рабочего колеса, увеличенный КПД ступени. Недостатками ступеней с разгруженными рабочими колесами является усложнение технологии и повышение трудоемкости изготовления, функциональный отказ способа разгрузки при засорении разгрузочных отверстий и при износе верхнего уплотнения рабочего колеса. Усиление пары индивидуальной осевой опоры и межступенного уплотнения СН может быть достигнуто применением двухопорной конструкции ступени (рис. 6.6,б). Двухопорная конструкция СН имеет по сравнению с одноопорной ступенью, повышенный ресурс индивидуальной нижней пяты ступени, более надежную изоляцию вала от абразивной и коррозионно-агрес-сивной протекающей жидкости, увеличенный ресурс работы и большую жесткость вала насоса из-за увеличенных осевых длин межступенных уплотнений, служащих в ЭЦН помимо уплотнения дополнительными радиальными подшипниками. Двухопорная конструкция ступени по сравнению с одноопорной более трудоемка в изготовлении. В погружном центробежном насосе для добычи нефти в зависимости от перекачиваемой продукции, в первую очередь, изнашиваются поверхности трения осевых и радиальных опор, в том числе осевых опор рабочих колес и радиальных межступенных уплотнений, а также поверхности каналов, контактирующие с потоком перекачиваемой жидкости. Повышение надежности и долговечности ступеней достигается путем уменьшения осевой силы, действующей на рабочие колеса, усиления пары трения осевой и радиальной опор, использования соответствующих износостойких и коррозионностойких материалов, уменьшением действия радиальных сил на ротор путем повышения точности изготовления, балансировки рабочих колес. Ответственной с точки зрения повышения надежности СН является верхняя пята рабочего колеса. Рабочее колесо работает на верхней пяте кратковременно на пусковых режимах и на режимах, лежащих правее рекомендованного диапазона подач, т.е. в режимах возможного всплытия рабочего колеса. При нарушении правил эксплуатации - установлении рабочего режима регулированием подачи от открытой задвижки - всплывшее рабочее колесо может не опускаться в свое нижнее положение и продолжительное время будет работать на своей верхней пяте. Условия трения в верхней пяте рабочего колеса менее благоприятные, чем условия трения нижней пяты из-за меньшего перепада давления в пяте, и, следовательно, худшей смазки поверхности трения. Износ поверхности каналов СН, контактирующих с потоком жидкости, возникает в случае применения СН для перекачивания жидкостей, содержащих механические примеси, твердость которых превышает твердость материалов СН. В насосах типа ЭЦН, ЭЦНИ и ЭЦНК используются ступени с одними и теми же проточными частями. Ступени в насосах разных исполнений отличаются друг от друга материалами рабочих органов, пар трения и некоторыми конструктивными элементами. Значительные отличия имеет насосная ступень, разработанная и выпускаемая фирмой «Новомет» (рис. 6.7.). Рабочее колесо 3 имеет на своем верхнем (заднем) диске радиальные лопатки 2, которые вместе с нижним диском направляющего аппарата 1 образуют упрощенную конструкцию вихревого насоса. Такая конструкция обеспечивает целый ряд преимуществ: во-первых, на 15—25 % увеличивается напор ступени, что позволяет либо увеличивать напор насоса при сохранении длины насоса, либо уменьшить длину насоса при постоянной величине напора. Во-вторых, наличие вихревой ступени обеспечивает гомогенизацию газожидкостной смеси (ГЖС), что позволяет работать погружному насосу с повышенным содержанием свободного газа на приеме (до 35 % по объему). В-третьих, наличие радиальных лопаток на верхнем диске снижает величину осевой нагрузки, действующей на рабочее колесо, что увеличивает ресурс нижней опорной шайбы 6 рабочего колеса. Надежность и КПД насоса производства фирмы «Новомет» повышает и то, что рабочее колесо выполняется методом порошковой металлургии. 6.2.2. Осевые опоры и радиальные подшипники вала насоса При работе насоса осевые усилия от рабочих колес передаются на направляющие аппараты и на корпус насоса. При этом на вал насоса действует осевая сила от перепада давления на торец вала и осевая сила, действующая на рабочие колеса, прихваченные к валу из-за наличия в пластовой жидкости коррозионно-активных элементов и механических примесей. Для восприятия осевых сил, действующих на вал, в конструкции насоса предусмотрены осевые опоры. Осевые усилия в таком насосе воспринимаются осевой опорой вала самого насоса (в отечественных конструкциях ЭЦН — рис. 6.8) или осевой опорой гидрозащиты (большая часть насосов импортного производства). В секции или модуль-секции насоса (рис. 6.8, а) обычного исполнения применяется упорный подшипник или гидродинамическая пята (рис. 6.9.), состоящий из кольца 1 с сегментами на обеих плоскостях, устанавливаемого между двумя гладкими шайбами 2, 3. Сегменты на шайбе пяты 1 выполнены с наклонной поверхностью с углом α = 5—7° и плоской площадкой длиной (0,5—0,7) L (где L — полная длина сегмента). Ширина сегмента В равна (l...l,4)L. Для компенсации неточностей изготовления и восприятия ударных нагрузок под гладкие кольца помещены эластичные резиновые шайбы-амортизаторы 4, 5, запрессованные в верхнюю 6 и нижнюю 7 опоры. Осевая сила от вала передается через пружинное кольцо 8 опоры вала и дистанционную втулку 9 упорному подшипнику.
Гидродинамическая пята выполнена с радиальными канавками, скосом и плоской частью на поверхности трения о подпятник. Она обычно изготавливается из бельтинга (технической ткани с крупными ячейками), пропитанного графитом с резиной и завулканизированного («запеченного») в пресс-форме. При вращении пяты жидкость идет от центра к периферии по канавкам, попадает под скос и нагнетается в зазор между плоскими частями подпятника и пяты. Таким образом, подпятник скользит по слою жидкости. Такое жидкостное трение (не в пусковом, а в рабочем режиме пяты) обеспечивает низкий коэффициент трения, незначительные потери энергии на трение в пяте, малый износ деталей пяты при достаточном осевом усилии, которое она воспринимает. Радиальный подшипник ЭЦН воспринимает радиальные нагрузки, возникающие при работе насоса. Радиальный подшипник (рис. 6.10) состоит из опорной втулки с вкладышем 1, которые являются неподвижными деталями и втулки 2, вращающейся вместе с валом. В каждой модуль-секции насоса обычного исполнения вал имеет два радиальных подшипника - верхний и нижний, а в модуль-секциях насосов износостойкого исполнения, используются промежуточные радиальные опоры. Также широко используется конструкция насоса с «плавающим низом», при которой осевая нагрузка, действующая на ротор секции насоса, воспринимается частью (около 40 %) верхних ступеней, рабочие колеса которых жестко закреплены на валу, рабочие же колеса нижних ступеней выполнены плавающими. За счет такой конструкции в модуль-секции насоса образуется гребенчатая пята. Фиксирование колес на валу осуществляется между нижними 7 и верхними 3 полукольцами, помещенными в соответствующие кольцевые проточки (рис. 6.11). Два полукольца 7 запираются ступицей первого из закрепленных на валу рабочего колеса. Распор ступиц рабочих колес достигается вращением специальной гайки относительно втулки, имеющей наружную резьбу. Упором для специальной гайки служат два полукольца, помещенные в верхнюю расточку вала. Еще одним вариантом является конструкция насоса с закрепленными на валу, распертыми рабочими колесами, при которой все рабочие колеса модуль-секции фиксируются на валу. Обычно такое исполнение выполняется на коротких модуль-секциях длиной до 2,4 м, которые могут помещаться над модуль-секцией насоса, выполненным с плавающим низом, гребенчатая пята которой воспринимает осевую силу этой модуль-секции. При ином конструктивном исполнении осевая сила, действующая на ротор секции насоса с «плавающим низом», передается на осевую опору протектора (рис. 6.11). Поперечные (радиальные) усилия в секции насоса, предназначенного для откачки неабразивной жидкости, воспринимаются двумя концевыми радиальными подшипниками, корпуса которых размещены в головке и корпусе входного модуля или в нижней части секции. В радиальных подшипниках использована пара трения скольжения, материал которой зависит от условий эксплуатации. Кроме того, поперечные усилия в секции воспринимаются радиальными подшипниками, функции которых выполняют пары трения, образованные ступицами рабочих колес и расточками направляющих аппаратов. На рис. 6.8 показан скважинный центробежный насос в сборе. Осевое усилие, действующее на вал, воспринимается гидродинамической пятой 1. Вал 3 расположен в радиальных подшипниках скольжения 2 и 8. Радиальными подшипниками вала являются и опоры скольжения у втулок вала и внутреннего диаметра направляющих аппаратов 5 у каждой ступени. Крутящий момент передается от вала к рабочим колесам 7 через шпонку 6. Вся сборка ротора насоса размещена в корпусе 4 и сжата сверху корпусом подшипника 2, а внизу - основанием 10, на котором размещена приемная сетка 9. В верхней части насоса на корпус подшипника 2 навернута ловильная головка насоса, в которой имеется резьба для соединения с НКТ. Вал насоса соединяется с валом гидрозащиты шлицевой муфтой 11. Для создания высоконапорных скважинных центробежных насосов в насосе приходится устанавливать множество ступеней (до 550 штук). При этом они не могут разместиться в одном корпусе, поскольку длина такого насоса (15—20 м) затрудняет транспортировку, монтаж на скважине и изготовление корпуса. Высоконапорные насосы составляются из нескольких модуль-секций. Длина корпуса в каждой секции не более 6 м. Корпусные детали отдельных модуль-секций соединяются фланцами с болтами или шпильками, а валы — шлицевыми муфтами. Каждая секция насоса имеет верхнюю осевую опору вала, вал, радиальные опоры вала, ступени. Приемную сетку имеет только входной модуль насоса (рис. 6.12), расположенный в нижней секции или в модуле насосном-газосепараторе. Ловильную модуль-головку имеет только верхняя секция насоса (рис. 6.13). Модуль-секции высоконапорных насосов могут иметь длину меньшую, чем 6 м (обычно длина корпуса насоса составляет 3, 4 и 5 м), в зависимости от числа ступеней, которые надо в них разместить. При отборе насосом жидкости с небольшим содержанием механических примесей и достаточной смазкой (наличие в жидкости нефти) насосы обычного исполнения обеспечивают длительную эксплуатацию скважины без их ремонта. В насосе имеются пары трения: текстолит по чугуну в осевых опорах рабочего колеса в ступени; латунная втулка, надетая на вал между рабочими колесами, или удлиненная чугунная ступица рабочего колеса по чугуну направляющего аппарата; прорезиненный и графитизированный бельтинг по закаленному и шлифованному стальному подпятнику в пяте насоса. Все эти пары трения достаточно долговечны при соответствующих условиях эксплуатации. При большой обводненности они работоспособны в течение 100-200 сут, а при достаточно большом количестве нефти в отбираемой жидкости насос может работать без ремонта от года до нескольких лет (есть примеры работы агрегатов ЭЦН без подъема из скважин в течение 3 - 5 лет). Скважинные центробежные насосы могут быть выполнены и для осложненных условий эксплуатации, например - для отбора жидкости с большим содержанием песка, отбора сильно обводненной жидкости с повышенной коррозионной агрессивностью. Для отбора жидкости с большим содержанием механических примесей (в основном песка) предназначаются износостойкие насосы. Они рассчитаны на отбор жидкости с содержанием 0,05 % (0,5 г/л) механических примесей. При отборе жидкости с песком свободно движущийся абразив разрушает диски и лопатки рабочего колеса и части направляющего аппарата, особенно в местах изменения направления движения струи жидкости. В местах трения деталей, у текстолитовой опоры, у ступицы колеса попадающий в зазор песок также изнашивает эти детали, причем ступицы изнашиваются до вала. Длинный гибкий вал при вращении получает несколько полуволн изгиба, и на его поверхности места износа четко показывают форму, которую он принимает при работе насоса (рис. 6.14). Для увеличения срока службы насоса при отборе жидкости с большим содержанием песка в конструкцию насоса могут быть внесены следующие основные изменения: 1. Чугунные рабочие колеса заменены пластмассовыми из полиамидной смолы или углепластика, стойких против износа свободным абразивом и не набухающих в воде. В скважинах с большим содержанием нефти, как показал опыт, они менее работоспособны. 2. Вместо одноопорной применяется двухопорная конструкция рабочего колеса. 3. Текстолитовая опора колеса заменена резиновой, а в направляющем аппарате опорой для этой резиновой шайбы служит стальная термообработанная втулка. 4. Для уменьшения износа ступиц рабочих колес и вала ставятся дополнительные (промежуточное) радиальные опоры, которые препятствуют изгибу вала при его вращении (см. рис. 6.14). Таким образом, снижаются усилия у радиальной опоры колеса в направляющем аппарате. С помощью этих и некоторых других изменений обычной конструкции насоса срок службы износостойкого насоса увеличивается в 2,5—7 раз. Для удержания вала в прямолинейном состоянии необходимо промежуточные (например, — резинометаллические) радиальные опоры ставить друг от друга на расстоянии, равном половине полуволны изгиба вала. На рис. 6.14. показаны длина полуволны l и расстояние между подшипниками 1/2 l. Длину полуволны изгиба вала можно найти, учитывая, что при вращении и изгибе вала потенциальная энергия изгиба вала (V) должна быть равна сумме работы центробежных сил ротора насоса (А1), осевых сил, действующих на вал (A2), и гидродинамических сил (А3), возникающих в радиальной опоре рабочего колеса в каждой ступени. Последние силы обусловлены давлением жидкости в зазоре между ступицей рабочего колеса и опорой в направляющем аппарате. Анализ всех этих сил применительно к современной конструкции износоустойчивого насоса показывает, что: 1) несмотря на применение пластмассовых колес и уменьшение, таким образом, массы ротора центробежного насоса, центробежные силы остаются основными факторами, изгибающими вал; 2) осевые силы, действующие на вал в предложенной конструкции и при опоре рабочих колес на направляющие аппараты, невелики, так как они воспринимаются в основном верхней осевой опорой, на которой подвешен вал; вес самого вала незначительно увеличивает (на 2—6 %) полуволну изгиба вала; 3) так как износостойкие насосы применяются в основном при большой обводненности, когда вязкость откачиваемой жидкости незначительно отличается от вязкости воды, то гидродинамические силы незначительны. Таким образом, для инженерных расчетов в случае, когда условия эксплуатации известны недостаточно точно, можно учитывать только действие центробежных сил и потенциальной энергии изгибаемого вала (последнее обусловлено размерами вала и характеристикой его материала). В этом случае длина полуволны изгиба будет где Е — модуль упругости материала вала; I — момент инерции сечения вала; q — вес единицы длины ротора насоса (вала, втулок, надетых на вал, рабочих колес); ω — частота вращения вала. В более точных расчетах, в основном при исследованиях, необходимо учитывать все указанные силы. Тогда выражение, из которого надо найти l, принимает следующий вид:
где В, D, Е, С и А — величины, зависящие от параметров ротора насоса, его частоты вращения и вязкости перекачиваемой жидкости.
Дата добавления: 2014-01-04; Просмотров: 1892; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |