Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обеспечение безопасности баз данных

5.1. Методы обеспечения безопасности

В современных СУБД поддерживается один из двух широко распространенных подходов к вопросу обеспечения безопасности данных, а именно избирательный подход или обязательный подход. В обоих подходах единицей данных или "объектом данных", для которых должна быть создана система безопасности, может быть как вся база данных целиком или какой-либо набор отношений, так и некоторое значение данных для заданного атрибута внутри некоторого кортежа в определенном отношении. Эти подходы отличаются следующими свойствами:

1. В случае избирательного управления некий пользователь обладает различными правами (привилегиями или полномочиями) при работе с разными объектами. Более того, разные пользователи обычно обладают и разными правами доступа к одному и тому же объекту. Поэтому избирательные схемы характеризуются значительной гибкостью.

2. В случае обязательного управления, наоборот, каждому объекту данных присваивается некоторый классификационный уровень, а каждый пользователь обладает некоторым уровнем допуска. Следовательно, при таком подходе доступом к опре­деленному объекту данных обладают только пользователи с соответствующим уровнем допуска. Поэтому обязательные схемы достаточно жестки и статичны.

Независимо от того, какие схемы используются – избирательные или обязательные, все решения относительно допуска пользователей к выполнению тех или иных операций принимаются на стратегическом, а не техническом уровне. Поэтому они находятся за пределами досягаемости самой СУБД, и все, что может в такой ситуации сделать СУБД, – это только привести в действие уже принятые ранее решения. Исходя из этого, можно отметить следующее:

Во-первых. Результаты стратегических решений должны быть известны системе (т.е. выполнены на основе утверждений, заданных с помощью некоторого подходящего языка) и сохраняться в ней (путем сохранения их в каталоге в виде правил безопасности, которые также называются полномочиями).

Во-вторых. Очевидно, должны быть некоторые средства регулирования запросов доступа по отношению к соответствующим правилам безопасности. (Здесь под "запросом, доступа" подразумевается комбинация запрашиваемой операции, запрашиваемого, объекта и запрашивающего пользователя.) Такая проверка выполняется подсистемой безопасности СУБД, которая также называется подсистемой полномочий.

В-третьих. Для того чтобы разобраться, какие правила безопасности к каким запросам доступа применяются, в системе должны быть предусмотрены способы опознания источника этого запроса, т.е. опознания запрашивающего пользователя. Поэтому в момент входа в систему от пользователя обычно требуется ввести не только его идентификатор (например, имя или должность), но также и пароль (чтобы подтвердить свои права на заявленные ранее идентификационные данные). Обычно предполагается, что пароль известен только системе и некоторым лицам с особыми правами.

В отношении последнего пункта стоит заметить, что разные пользователи могут обладать одним и тем же идентификатором некоторой группы. Таким образом, в системе могут поддерживаться группы пользователей и обеспечиваться одинаковые права доступа для пользователей одной группы, например для всех лиц из расчетного отдела. Кроме того, операции добавления отдельных пользователей в группу или их удаления из нее могут выполняться независимо от операции задания привилегий для этой группы. Обратите внимание, однако, что местом хранения информации о принадлежности к группе также является системный каталог (или, возможно, база данных).

Перечисленные выше методы управления доступом на самом деле являются частью более общей классификации уровней безопасности. Прежде всего в этих документах определяется четыре класса безопасности (security classes) – D, С, В и А. Среди них класс D наименее безопасный, класс С – более безопасный, чем класс D, и т.д. Класс D обеспечивает минимальную защиту, класс С – избирательную, класс В – обязательную, а класс А – проверенную защиту.

Избирательная защита. Класс С делится на два подкласса – С1 и С2 (где подкласс С1 менее безопасен, чем подкласс С2), которые поддерживают избирательное управление доступом в том смысле, что управление доступом осуществляется по усмотрению владельца данных.

Согласно требованиям класса С1 необходимо разделение данных и пользователя, т.е. наряду с поддержкой концепции взаимного доступа к данным здесь возможно также организовать раздельное использование данных пользователями.

Согласно требованиям класса С2 необходимо дополнительно организовать учет на основе процедур входа в систему, аудита и изоляции ресурсов.

Обязательная защита. Класс В содержит требования к методам обязательного управления доступом и делится на три подкласса – В1, В2 и В3 (где В1 является наименее, а В3 – наиболее безопасным подклассом).

Согласно требованиям класса В1 необходимо обеспечить "отмеченную защиту" (это значит, что каждый объект данных должен содержать отметку о его уровне классификации, например: секретно, для служебного пользования и т.д.), а также неформальное сообщение о действующей стратегии безопасности.

Согласно требованиям класса В2 необходимо дополнительно обеспечить формальное утверждение о действующей стратегии безопасности, а также обнаружить и исключить плохо защищенные каналы передачи информации.

Согласно требованиям класса В3 необходимо дополнительно обеспечить поддержку аудита и восстановления данных, а также назначение администратора режима безопасности.

Проверенная защита. Класс А является наиболее безопасным и согласно его требованиям необходимо математическое доказательство того, что данный метод обеспечения безопасности совместимый и адекватен заданной стратегии безопасности.

Хотя некоторые коммерческие СУБД обеспечивают обязательную защиту на уровне класса В1, обычно они обеспечивают избирательное управление на уровне класса С2.

 

5.2. Избирательное управление доступом

Избирательное управление доступом поддерживается многими СУБД. Избирательное управление доступом поддерживается в языке SQL.

В общем случае система безопасности таких СУБД базируется на трех компонентах:

1. Пользователи. СУБД выполняет любое действия с БД от имени какого-то пользователя. Каждому пользователю присваивается идентификатор – короткое имя, однозначно определяющее пользователя в СУБД. Для подтверждения того, что пользователь может работать с введенным идентификатором используется пароль. Таким образом, с помощью идентификатора и пароля производится идентификация и аутентификация пользователя. Большинство коммерческих СУБД позволяет объединять пользователей с одинаковыми привилегиями в группы – это позволяет упростить процесс администрирования.

2. Объекты БД. По стандарту SQL2 защищаемыми объектами в БД являются таблицы, представления, домены и определенные пользователем наборы символов. Большинство коммерческих СУБД расширяет список объектов, добавляя в него хранимые процедуры и др. объекты.

3. Привилегии. Привилегии показывают набор действий, которые возможно производить над тем или иным объектом. Например пользователь имеет привилегию для просмотра таблицы.

5.3. Обязательное управление доступом

Методы обязательного управления доступом применяются к базам данных, в которых данные имеют достаточно статичную или жесткую структуру, свойственную, например, правительственным или военным организациям. Как уже отмечалось, основная идея заключается в том, что каждый объект данных имеет некоторый уровень классификации, например: секретно, совершенно секретно, для служебного пользования и т.д., а каждый пользователь имеет уровень допуска с такими же градациями, что и в уровне классификации. Предполагается, что эти уровни образуют строгий иерархический порядок, например: совершенно секретно ® секретно ® для служебного пользования и т.д. Тогда на основе этих сведений можно сформулировать два очень простых правила безопасности:

1. пользователь имеет доступ к объекту, только если его уровень допуска больше или равен уровню классификации объекта.

2. пользователь может модифицировать объекту, только если его уровень допуска равен уровню классификации объекта.

Правило 1 достаточно очевидно, а правило 2 требует дополнительных разъяснений. Прежде всего следует отметить, что по-другому второе правило можно сформулировать так: любая информация, записанная некоторым пользователем, автоматически приобретает уровень, равный уровню классификации этого пользователя. Такое правило необходимо, например, для того, чтобы предотвратить запись секретных данных, выполняемую пользователем с уровнем допуска "секретно", в файл с меньшим уровнем классификации, что нарушает всю систему секретности.

В последнее время методы обязательного управления доступом получили широкое распространение. Требования к такому управлению доступом изложены в двух документах, которые неформально называются "оранжевой" книгой (Orange Book) и "розовой" книгой (Lavender Book). В "оранжевой" книге перечислен набор требований к безопасности для некой "надежной вычислительной базы" (Trusted Computing Base), а в "розовой" книге дается интерпретация этих требований для систем управления базами данных.

5.4. Шифрование данных

До сих пор в этой главе подразумевалось, что предполагаемый нелегальный пользователь пытается незаконно проникнуть в базу данных с помощью обычных средств доступа, имеющихся в системе. Теперь следует рассмотреть случай, когда такой пользователь пытается проникнуть в базу данных, минуя систему, т.е. физически перемещая часть базы данных или подключаясь к коммуникационному каналу. Наиболее эффективным методом борьбы с такими угрозами является шифрование данных, т.е. хранение и передача особо важных данных в зашифрованном виде.

Для обсуждения основных концепций кодирования данных следует ввести некоторые новые понятия. Исходные (незакодированные) данные называются открытым текстом. Открытый текст шифруется с помощью специального алгоритма шифрования. В качестве входных данных для такого алгоритма выступают открытый текст и ключ шифрования, а в качестве выходных – зашифрованная форма открытого текста, которая называется зашифрованным текстом. Если детали алгоритма шифрования могут быть опубликованы или, по крайней мере, могут не утаиваться, то ключ шифрования обязательно хранится в секрете. Именно зашифрованный текст, который непонятен тем, кто не обладает ключом шифрования, хранится в базе данных и передается по коммуникационному каналу.

 

5.5. Контрольный след выполняемых операций

Важно понимать, что не бывает неуязвимых систем безопасности, поскольку настойчивый потенциальный нарушитель всегда сможет найти способ преодоления всех систем контроля, особенно если за это будет предложено достаточно высокое вознаграждение. Поэтому при работе с очень важными данными или при выполнении критических операций возникает необходимость регистрации контрольного следа выполняемых операций. Если, например, противоречивость данных приводит к подозрению, что совершено несанкционированное вмешательство в базу данных, то контрольный след должен быть использован для прояснения ситуации и подтверждения того, что все процессы находятся под контролем. Если это не так, то контрольный след поможет, по крайней мере, обнаружить нарушителя.

Для сохранения контрольного следа обычно используется особый файл, в котором система автоматически записывает все выполненные пользователями операции при работе с обычной базой данных. Типичная запись в файле контрольного следа может содержать такую информацию:

1. запрос (исходный текст запроса);

2. терминал, с которого была вызвана операция;

3. пользователь, задавший операцию;

4. дата и время запуска операции;

5. вовлеченные в процесс исполнения операции базовые отношения, кортежи и атрибуты;

6. старые значения;

7. новые значения.

Как уже упоминалось ранее, даже констатация факта, что в данной системе поддерживается контрольное слежение, в некоторых случаях весьма существенна для предотвращения несанкционированного проникновения в систему.

 

5.6. Поддержка мер обеспечения безопасности в языке SQL

 

В действующем стандарте языка SQL предусматривается поддержка только избирательного управления доступом. Она основана на двух более или менее независимых частях SQL. Одна из них называется механизмом представлений, который (как говорилось выше) может быть использован для скрытия очень важных данных от несанкционированных пользователей. Другая называется подсистемой полномочий и наделяет одних пользователей правом избирательно и динамично задавать различные полномочия другим пользователям, а также отбирать такие полномочия в случае необходимости.

5.7. Директивы GRANT и REVOKE

Механизм представлений языка SQL позволяет различными способами разделить базу данных на части таким образом, чтобы некоторая информация была скрыта от пользователей, которые не имеют прав для доступа к ней. Однако этот режим задается не с помощью параметров операций, на основе которых санкционированные пользователи выполняют те или иные действия с заданной частью данных. Эта функция (как было показано выше) выполняется с помощью директивы GRANT.

Обратите внимание, что создателю любого объекта автоматически предоставляются все привилегии в отношении этого объекта.

Стандарт SQL1 определяет следующие привилегии для таблиц:

1. SELECT – позволяет считывать данные из таблицы или представления;

INSERT – позволяет вставлять новые записи в таблицу или представление;

UPDATE – позволяет модифицировать записи из таблицы или представления;

DELETE – позволяет удалять записи из таблицы или представления.

Стандарт SQL2 расширил список привилегий для таблиц и представлений:

1. INSERT для отдельных столбцов, подобно привилегии UPDATE;

2. REFERENCES – для поддержки внешнего ключа.

Помимо перечисленных выше добавлена привилегия USAGE – для других объектов базы данных.

Кроме того, большинство коммерческих СУБД поддерживает дополнительные привилегии, например:

1. ALTER – позволяет модифицировать структуру таблиц (DB2, Oracle);

2. EXECUTE – позволяет выполнять хранимые процедуры.

Создатель объекта также получает право предоставить привилегии доступа какому-нибудь другому пользователю с помощью оператора GRANT. Ниже приводится синтаксис утверждения GRANT:

GRANT {SELECT|INSERT|DELETE|(UPDATE столбец, …)}, …

ON таблица ТО {пользователь | PUBLIC} [WITH GRANT OPTION]

Привилегии вставки (INSERT) и обновления (UPDATE) (но не привилегии выбора SELECT, что весьма странно) могут задаваться для специально заданных столбцов.

Если задана директива WITH GRANT OPTION, это значит, что указанные пользователи наделены особыми полномочиями для заданного объекта – правом предоставления полномочий. Это, в свою очередь, означает, что для работы с данным объектом они могут наделять полномочиями других пользователей

Например: предоставить пользователю Ivanov полномочия для осуществления выборки и модификации фамилий в таблице Students с правом предоставления полномочий.

GRANT SELECT, UPDATE StName

ON Students ТО Ivanov WITH GRANT OPTION

Если пользователь А наделяет некоторыми полномочиями другого пользователя В, то впоследствии он может отменить эти полномочия для пользователя В. Отмена полномочий выполняется с помощью директивы REVOKE с приведенным ниже синтаксисом.

REVOKE {{SELECT | INSERT | DELETE | UPDATE},…|ALL PRIVILEGES}

ON таблица,… FROM {пользователь | PUBLIC},… {CASCADE | RESTRICT}

Поскольку пользователь, с которого снимается привилегия, мог предоставить ее другому пользователю (если обладал правом предоставления полномочий), возможно возникновение ситуации покинутых привилегий. Основное предназначение параметров RESTRICT и CASCADE заключается в предотвращении ситуаций с возникновением покинутых привилегий. Благодаря заданию параметра RESTRICT не разрешается выполнять операцию отмены привилегии, если она приводит к появлению покинутой привилегии. Параметр CASCADE указывает на последовательную отмену всех привилегий, производных от данной.

Например: снять с пользователя Ivanov полномочия для осуществления модификации фамилий в таблице Students. Также снять эту привилегию со всех пользователей, которым она была предоставлена Ивановым.

REVOKE UPDATE

ON Students FROM Ivanov CASCADE

При удалении домена, таблицы, столбца или представления автоматически будут удалены также и все привилегии в отношении этих объектов со стороны всех пользователей.

5.8. Представления и безопасность

Создавая представления, и давая пользователям разрешение на доступ к нему, а не к исходной таблице, можно тем самым ограничить доступ пользователя, разрешив его только к заданным столбцам или записям. Таким образом, представления позволяют осуществить полный контроль над тем, какие данные доступны тому или иному пользователю.

Заключение

Для минимизации риска потерь необходима реализация комплекса нормативных, организационных и технических защитных мер, в первую очередь: введение ролевого управления доступом, организация доступа пользователей по предъявлению цифрового сертификата, а в ближайшей перспективе – промышленное решение по выборочному шифрованию и применение алгоритмов ГОСТ для шифрования выбранных сегментов базы.

Для полного решения проблемы защиты данных администратор безопасности должен иметь возможность проводить мониторинг действий пользователей, в том числе с правами администратора. Поскольку штатная система аудита не имеет достаточных средств защиты, необходима независимая система, защищающая корпоративную сеть не только снаружи, но и изнутри. В будущем должны также появиться типовые методики комплексного решения задачи защиты баз данных для предприятий разного масштаба – от мелких до территориально распределенных.

 

<== предыдущая лекция | следующая лекция ==>
Политика безопасности | Общая характеристика строя современного английского языка
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 7260; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.04 сек.