КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энергетический обмен в клетке
Биосинтез белка Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. Этапы биосинтеза одного вида белка в клетке: • сначала происходит синтез мРНК на определенном участке одной из цепей молекулы ДНК; • мРНК выходит через поры ядерной мембраны в цитоплазму и прикрепляется к малой субъединице рибосом; • к этой же субъединице рибосомы присоединяется ини-циаторная тРНК, антикодон которой взаимодействует со стартовым кодоном мРНК — АУГ, затем из малой и большой частиц формируется рабочая рибосома;
• на противоположном антикодону конце молекулы ини-циаторной тРНК находится аминокислота метионин (ее код — АУГ). Карбоксильная группа метионина присоединяется к аминогруппе следующей аминокислоты, доставленной на рибосому; • при включении новой аминокислоты рибосома передвигается вперед на три нуклеотида. Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной аминокислоты оказывается рядом с аминогруппой другой аминокислоты. В результате между ними образуется пептидная связь; • рибосома движется вдоль мРНК, пока не достигнет одного из ее трех стоп-кодонов — УАА, УАГ или УГА; • после этого полипептид покидает рибосому и направляется в цитоплазму. На одной молекуле мРНК находятся несколько рибосом, образующих полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых полипептидных цепей; • каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ; • биосинтез происходит в клетках с огромной скоростью (в организме высших животных в одну минуту образуется до 60 тыс. пептидных связей). Точность белкового синтеза обеспечивается следующими механизмами: • фермент аминоацил-тРНК-синтетазы обеспечивает связывание строго определенной аминокислоты с соответствующими молекулами транспортной РНК; • транспортная РНК, присоединившая аминокислоту, своим антикодоном связывается с кодоном на информационной РНК в месте прикрепления рибосомы. Только после узнавания молекулой тРНК «своего» кодона аминокислота включается в растущую полипептидную цепь. Энергетический обмен — это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями. Участие ферментов снижает энергию активации химических реакций, благодаря чему энергия выделяется не сразу (как при зажигании спички), а постепенно.
Первый этап — подготовительный. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных — ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называют пищеварением. Второй этап — бескислородный (гликолиз). Происходит в цитоплазме клеток. Главным источником энергии в клетке является глюкоза. Ее бескислородное расщепление называют анаэробным гликолизом. Он состоит из ряда последовательных реакций по превращению глюкозы в лактат. Его присутствие в мышцах хорошо известно уставшим спортсменам. В ходе гликолиза образуется большое количество энергии, часть которой рассеивается в виде тепла, а часть используется на синтез АТФ. Суммарное уравнение реакций гликолиза выглядит следующим образом:
Молекула С3Н4О3 — пировиноградная кислота, или пиру-ват, может восстанавливаться до этилового спирта при спиртовом брожении у дрожжей или в клетке растений, а может превращаться в лактат, как это происходит у некоторых бактерий или в мышцах животных. СН3СОСООН + НАДН -> С3Н6O3 + НАД + лактат. Третий этап — кислородный, состоящий из цикла Кребса и окислительного фосфорилирования. Он стал возможным после накопления в атмосфере достаточного количества молекулярного кислорода. Происходит в митохондриях клеток.
Рис. 13. Схема синтеза АТФ в митохондриях Пировиноградная кислота (ПВК), попав в митохондрии, взаимодействует с коферментом А (КоА). В результате образуется ацетилкофермент А, который включается в цикл Кребса, названный по имени нобелевского лауреата Ганса Кребса. Суммарная реакция гликолиза и цикла Кребса: C6H12O6 + 6Н2O 6СO2 + 4АТФ + 8НАДН2 + 2НАДФН2 + + 2ФАДН2. Большая часть энергии сберегается в переносчиках электронов — НАД и ФАД. Энергия молекул-переносчиков используется в следующей стадии — стадии окислительного фосфорилирования. Окислительное фосфорилирование (клеточное дыхание) происходит на внутренних мембранах митохондрий, в кото-рые встроены молекулы — переносчики электронов. В ходе»той стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ. АТФ образуется в результате работы протонной помпы, протаскивающей протоны Н+ через канал АТФ-азы на внутреннюю поверхность мембраны. Протоны, взаимодействуя с кислородом, образуют воду, а энергия протонов используется для фосфорилирования АДФ в АТФ. Реакции в дыхательной цепи: НАД(Ф)Н2+ O2 НАД(Ф) + Н2O + ЗАТФ; ФАДН2 + O2 -> ФАД + Н2O = 2АТФ. Суммарная реакция энергетического обмена: С6Н12О6 + 6O2 6СO2 + 6Н2O + 38АТФ.
Дата добавления: 2014-01-04; Просмотров: 253; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |