КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Действующее значение переменного тока и напряжения
Аналитический метод с использованием комплексных чисел Графоаналитический способ Временная диаграмма Аналитический способ Для тока (2.1) i(t) = Im sin(ωt + ψi), для напряжения (2.2) u(t) = Um sin (ωt +ψu), для ЭДС (2.3) e(t) = Em sin (ωt +ψe), В уравнениях (2.1 – 2.3) обозначено: Im, Um, Em – амплитуды тока, напряжения, ЭДС; Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо. Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1). i(t) = Im sin(ωt - ψi).
Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины. Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой. Векторные величины отмечаются точкой над соответствующими переменными. Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным. В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм. Пример (рис. 2.3)
i1(t) = Im1 sin(ωt) i(t) =? Первый закон Кирхгофа выполняется для мгновенных значений токов: i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt - ψ2) = Im sin(ωt + ψ). Приравниваем проекции на вертикальную и горизонтальные оси (рис. 2.4): (2.4) Im sin ψ = Im2 sin ψ2; (2.5) Im cos ψ = Im2 cos ψ2 + Im1;
Из равенств (2.4 – 2.5) получаем ;
Синусоидальный ток i(t) = Im sin(ωt + ψ) можно представить комплексным числом Ím на комплексной плоскости (рис. 2.5) Ím = Imejψ, где амплитуда тока Im – модуль, а угол ψ, являющийся начальной фазой, – аргумент комплексного тока. Использование комплексной формы представления позволяет заменить геометрические операции над векторами алгебраическими операциями над комплексными числами. В результате этого к анализу цепей переменного тока могут быть применены все методы анализа цепей постоянного тока. Подробнее этот метод будет рассмотрен ниже. Для сравнения действий постоянного и переменного токов вводят понятие действующее значение переменного тока. Действующее значение переменного тока численно равно такому постоянному току, при котором за время равное одному периоду в проводнике с сопротивлением R выделяется такое же количество тепловой энергии, как и при переменном токе. Определим количество энергии, выделяемой за период в проводнике с сопротивлением R для каждого из токов и приравняем их.
(2.6)
Из (2.6) следует:
Для любой из синусоидальных величин получаем ;. Условились, что все измерительные приборы показывают действующие значения. Например, 220 В – действующее значение, тогда.
Дата добавления: 2014-01-04; Просмотров: 599; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |