КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 11 - Нечеткие алгоритмы управления
Нечеткая логика основана на использовании таких оборотов естественного языка, как «далеко», «близко», «холодно», «горячо». Диапазон ее применения очень широк - от бытовых приборов до управления сложными промышленными процессами. Многие современные задачи управления просто не могут быть решены классическими методами из-за очень большой сложности математических моделей, их описывающих. Вместе с тем, чтобы использовать теорию нечеткости на цифровых компьютерах, необходимы математические преобразования, позволяющие перейти от лингвистических переменных к их числовым аналогам в ЭВМ.
На рис. 2 показаны области наиболее эффективного применения современных технологий управления. Как видно, классические методы управления хорошо работают при полностью детерминированном объекте управления и детерминированной среде, а для систем с неполной информацией и высокой сложностью объекта управления оптимальными являются нечеткие методы управления. (В правом верхнем углу рисунка приведена еще одна современная технология управления - с применением искусственных нейронных сетей, но мы не станем столь глубоко вдаваться в достижения ученых.) Вернемся к теории и кратко рассмотрим такие понятия, как «нечеткие правила», «нечеткий вывод» да и сам термин «нечеткое управление». Классическая логика развивается с древнейших времен. Ее основоположником считается Аристотель. Логика известна нам как строгая и сугубо теоретическая наука, и большинство ученых (кроме разработчиков последнего поколения компьютеров) продолжают придерживаться этого мнения. Вместе с тем классическая или булева логика имеет один существенный недостаток - с ее помощью невозможно описать ассоциативное мышление человека. Классическая логика оперирует только двумя понятиями: ИСТИНА и ЛОЖЬ, и исключая любые промежуточные значения. Аналогично этому булева логика не признает ничего кроме единиц и нулей. Все это хорошо для вычислительных машин, но попробуйте представить весь окружающий вас мир только в черном и белом цвете, вдобавок исключив из языка любые ответы на вопросы, кроме ДА и НЕТ. В такой ситуации вам можно только посочувствовать. Решить эту проблему и призвана нечеткая логика. С термином «лингвистическая переменная» можно связать любую физическую величину, для которой нужно иметь больше значений, чем только ДА и НЕТ. В этом случае вы определяете необходимое число термов и каждому из них ставите в соответствие некоторое значение описываемой физической величины. Для этого значения степень принадлежности физической величины к терму будет равна единице, а для всех остальных значений - в зависимости от выбранной функции принадлежности. Например, можно ввести переменную ВОЗРАСТ и определить для нее термы ЮНОШЕСКИЙ, СРЕДНИЙ и ПРЕКЛОННЫЙ. Обсудив с экспертами значения конкретного возраста для каждого терма, вы с полной уверенностью можете избавиться от жестких ограничений логики Аристотеля. Получившие наибольшее развитие из всех разработок искусственного интеллекта, экспертные системы завоевали устойчивое признание в качестве систем поддержки принятия решений. Подобные системы способны аккумулировать знания, полученные человеком в различных областях деятельности. Посредством экспертных систем удается решить многие современные задачи, в том числе и задачи управления. Однако большинство систем все еще сильно зависит от классической логики. Одним из основных методов представления знаний в экспертных системах являются продукционные правила, позволяющие приблизиться к стилю мышления человека. Любое правило продукций состоит из посылок и заключения. Возможно наличие нескольких посылок в правиле, в этом случае они объединяются посредством логических связок И, ИЛИ. Обычно продукционное правило записывается в виде: «ЕСЛИ (посылка) (связка) (посылка)… (посылка) ТО (заключение)». Главным же недостатком продукционных систем остается то, что для их функционирования требуется наличие полной информации о системе. Нечеткие системы тоже основаны на правилах продукционного типа, однако в качестве посылки и заключения в правиле используются лингвистические переменные, что позволяет избежать ограничений, присущих классическим продукционным правилам. Целевая установка процесса управления связывается с выходной переменной нечеткой системы управления, но результат нечеткого логического вывода является нечетким, а физическое исполнительное устройство не способно воспринять такую команду. Необходимы специальные математические методы, позволяющие переходить от нечетких значений величин к вполне определенным. В целом весь процесс нечеткого управления можно разбить на несколько шагов: фаззификация, разработка нечетких правил и дефаззификация. Рассмотрим подробнее эти шаги на примере поставляемой с пакетом fuzzy TECH модели контейнерного крана. Пусть вам, как маститому крановщику, необходимо перегрузить контейнер с баржи на железнодорожную платформу. Вы управляете мощностью двигателя тележки крана, заставляя ее двигаться быстрее или медленнее. От скорости перемещения тележки, в свою очередь, зависит расстояние до цели и амплитуда колебания контейнера на тросе. Вследствие того, что стратегия управления краном сильно зависит от положения тележки, применение стандартных контроллеров для этой задачи весьма затруднительно. Вместе с тем математическая модель движения груза, состоящая из нескольких дифференциальных уравнений, может быть составлена довольно легко, но для ее решения при различных исходных данных потребуется довольно много времени. К тому же исполняемый код программы будет большим и не поворотливым. Нечеткая система справляется с такой задачей очень быстро - несмотря на то, что вместо сложных дифференциальных уравнений движения груза весь процесс движения описывается терминами естественного языка: «больше», «средне», «немного» и т. п. То есть так, будто вы даете указания своему товарищу, сидящему за рычагами управления. Фаззификация (переход к нечеткости) Точные значения входных переменных преобразуются в значения лингвистических переменных посредством применения некоторых положений теории нечетких множеств, а именно - при помощи определенных функций принадлежности. Рассмотрим этот этап подробнее. Прежде всего, введем понятие «лингвистической переменной» и «функции принадлежности».
Дата добавления: 2014-01-04; Просмотров: 1117; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |