Термин триггер происходит от английского слова trigger — защёлка, спусковой крючок. Для обозначения этой схемы в английском языке чаще употребляется термин flip-flop, что в переводе означает “хлопанье”. Это звукоподражательное название электронной схемы указывает на её способность почти мгновенно переходить (“перебрасываться”) из одного электрического состояния в другое и наоборот. Самый распространённый тип триггера — так называемый RS-триггер (S и R, соответственно, от английских set — установка, и reset — сброс). Условное обозначение триггера — на рис. 5.6.
Он имеет два симметричных входа S и R и два симметричных выхода Q и , причем выходной сигнал Q является логическим отрицанием сигнала . На каждый из двух входов S и R могут подаваться входные сигналы в виде кратковременных импульсов (). Наличие импульса на входе будем считать единицей, а его отсутствие — нулем. На рис. 5.7 показана реализация триггера с помощью вентилей ИЛИ-НЕ и соответствующая таблица истинности.
Проанализируем возможные комбинации значений входов R и S триггера, используя его схему и таблицу истинности схемы ИЛИ-НЕ (табл. 5.5). 1. Если на входы триггера подать S=“1”, R=“0”, то (независимо от состояния) на выходе Q верхнего вентиля появится “0”. После этого на входах нижнего вентиля окажется R=“0”, Q=“0” и выход станет равным “1”.
| |||||||||||||||||||
5.8. Что такое сумматор? | |||||||||||||||||||
Сумматор служит, прежде всего, центральным узлом арифметико-логического устройства компьютера, однако он находит применение также и в других устройствах машины. Многоразрядный двоичный сумматор, предназначенный для сложения многоразрядных двоичных чисел, представляет собой комбинацию одноразрядных сумматоров, с рассмотрения которых мы и начнём. Условное обозначение одноразрядного сумматора на рис. 5.8.
При сложении чисел A и B в одном i -ом разряде приходится иметь дело с тремя цифрами: 1. цифра a i первого слагаемого; 2. цифра b i второго слагаемого; 3. перенос p i–1 из младшего разряда. В результате сложения получаются две цифры: 1. цифра c i для суммы; 2. перенос p i из данного разряда в старший. Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:
Если требуется складывать двоичные слова длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого. Например, схема вычисления суммы C = (с3 c2 c1 c0) двух двоичных трехразрядных чисел A = (a2 a1 a0) и B = (b2 b1 b0) может иметь вид:
| ||||||||||||||||||||||||||||||||||||||||||||||||
5.10. Как составить таблицу истинности? | ||||||||||||||||||||||||||||||||||||||||||||||||
Согласно определению, таблица истинности логической формулы выражает соответствие между всевозможными наборами значений переменных и значениями формулы.
Для формулы, которая содержит две переменные, таких наборов значений переменных всего четыре: (0,0), (0,1), (1,0), (1,1).
Если формула содержит три переменные, то возможных наборов значений переменных восемь:
(0,0,0), (0,0,1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0), (1,1,1).
Количество наборов для формулы с четырьмя переменными равно шестнадцати и т.д.
Удобной формой записи при нахождении значений формулы является таблица, содержащая кроме значений переменных и значений формулы также и значения промежуточных формул.
Примеры.
1. Составим таблицу истинности для формулы, которая содержит две переменные x и y. В первых двух столбцах таблицы запишем четыре возможных пары значений этих переменных, в последующих столбцах — значения промежуточных формул и в последнем столбце — значение формулы. В результате получим таблицу:
Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 1, то есть является тождественно истинной. 2. Таблица истинности для формулы :
Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 0, то есть является тождественно ложной. 3. Таблица истинности для формулы :
Из таблицы видно, что формула в некоторых случаях принимает значение 1, а в некоторых — 0, то есть является выполнимой. |
5.11. Как упростить логическую формулу? |
Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определённому виду путем использования основных законов алгебры логики.
Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.). Покажем на примерах некоторые приемы и способы, применяемые при упрощении логических формул: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Из этих примеров видно, что при упрощении логических формул не всегда очевидно, какой из законов алгебры логики следует применить на том или ином шаге. Навыки приходят с опытом. | |
5.12. Что такое переключательная схема? | |
В компьютерах и других автоматических устройствах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. Разработка таких схем весьма трудоёмкое дело. Оказалось, что здесь с успехом может быть использован аппарат алгебры логики.
Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю. Будем считать, что два переключателя Х и связаны таким образом, что когда Х замкнут, то разомкнут, и наоборот. Следовательно, если переключателю Х поставлена в соответствие логическая переменная х, то переключателю должна соответствовать переменная . Всей переключательной схеме также можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю — если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости. Найдем функции проводимости F некоторых переключательных схем: a) Схема не содержит переключателей и проводит ток всегда, следовательно F=1; б) Схема содержит один постоянно разомкнутый контакт, следовательно F=0; в) Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x; г) Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) = ; д) Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = xЧy; е) Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y; ж) Схема состоит из двух параллельных ветвей и описывается функцией .
Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И. Журавлев, С.В. Яблонский и др. При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы. СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам: 1. составлению функции проводимости по таблице истинности, отражающей эти условия;
1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.
1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов. Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид F(x, y, z, t) = t Ч (x v y v z), а схема выглядит так:
Схема имеет вид:
4. Упростим переключательные схемы: а) Решение: Упрощенная схема: б) . Здесь первое логическое слагаемое является отрицанием второго логического слагаемого , а дизъюнкция переменной с ее инверсией равна 1. Упрощенная схема: в) Упрощенная схема: г) Упрощенная схема: д) (по закону склеивания) Упрощенная схема: е) Решение: Упрощенная схема: | ||
5.13. Как решать логические задачи? | ||
Разнообразие логических задач очень велико. Способов их решения тоже немало. Но наибольшее распространение получили следующие три способа решения логических задач:
Познакомимся с ними поочередно.
1. изучается условие задачи;
— Вот увидишь, Шумахер не придет первым, — сказал Джон. Первым будет Хилл. — Да нет же, победителем будет, как всегда, Шумахер, — воскликнул Ник. — А об Алези и говорить нечего, ему не быть первым. Питер, к которому обратился Ник, возмутился: — Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину. По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки? Решение. Введем обозначения для логических высказываний: Ш — победит Шумахер; Х — победит Хилл; А — победит Алези. Реплика Ника "Алези пилотирует самую мощную машину" не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается. Зафиксируем высказывания каждого из друзей:
Ответ. Победителем этапа гонок стал Шумахер. Пример 2. Некий любитель приключений отправился в кругосветное путешествие на яхте, оснащённой бортовым компьютером. Его предупредили, что чаще всего выходят из строя три узла компьютера — a, b, c, и дали необходимые детали для замены. Выяснить, какой именно узел надо заменить, он может по сигнальным лампочкам на контрольной панели. Лампочек тоже ровно три: x, y и z. Инструкция по выявлению неисправных узлов такова: 1. если неисправен хотя бы один из узлов компьютера, то горит по крайней мере одна из лампочек x, y, z;
Какие узлы заменил путешественник? Какие изъяны он обнаружил в инструкции? Решение. Введем обозначения для логических высказываний: a — неисправен узел а; x — горит лампочка х; b — неисправен узел b; y — горит лампочка y; с — неисправен узел с; z — горит лампочка z. Правила 1–5 выражаются следующими формулами:
Дата добавления: 2014-01-04; Просмотров: 435; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |