Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Что такое триггер?

5.7. Что такое триггер?
 

 

Триггер — это электронная схема, широко применяемая в регистрах компьютера для надёжного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое — двоичному нулю.

Термин триггер происходит от английского слова trigger — защёлка, спусковой крючок. Для обозначения этой схемы в английском языке чаще употребляется термин flip-flop, что в переводе означает “хлопанье”. Это звукоподражательное название электронной схемы указывает на её способность почти мгновенно переходить (“перебрасываться”) из одного электрического состояния в другое и наоборот.

Самый распространённый тип триггера — так называемый RS-триггер (S и R, соответственно, от английских set — установка, и reset — сброс). Условное обозначение триггера — на рис. 5.6.


Рис. 5.6

Он имеет два симметричных входа S и R и два симметричных выхода Q и , причем выходной сигнал Q является логическим отрицанием сигнала .

На каждый из двух входов S и R могут подаваться входные сигналы в виде кратковременных импульсов ( ).

Наличие импульса на входе будем считать единицей, а его отсутствие — нулем.

На рис. 5.7 показана реализация триггера с помощью вентилей ИЛИ-НЕ и соответствующая таблица истинности.


Рис. 5.7

S R Q
запрещено
хранение бита

Проанализируем возможные комбинации значений входов R и S триггера, используя его схему и таблицу истинности схемы ИЛИ-НЕ (табл. 5.5).

1. Если на входы триггера подать S=“1”, R=“0”, то (независимо от состояния) на выходе Q верхнего вентиля появится “0”. После этого на входах нижнего вентиля окажется R=“0”, Q=“0” и выход станет равным “1”.
2. Точно так же при подаче “0” на вход S и “1” на вход R на выходе появится “0”, а на Q — “1”.
3. Если на входы R и S подана логическая “1”, то состояние Q и не меняется.
4. Подача на оба входа R и S логического “0” может привести к неоднозначному результату, поэтому эта комбинация входных сигналов запрещена.




Поскольку один триггер может запомнить только один разряд двоичного кода, то для запоминания байта нужно 8 триггеров, для запоминания килобайта, соответственно, 8 • 210 = 8192 триггеров. Современные микросхемы памяти содержат миллионы триггеров.

5.8. Что такое сумматор?
 

 

Сумматор — это электронная логическая схема, выполняющая суммирование двоичных чисел.

Сумматор служит, прежде всего, центральным узлом арифметико-логического устройства компьютера, однако он находит применение также и в других устройствах машины.

Многоразрядный двоичный сумматор, предназначенный для сложения многоразрядных двоичных чисел, представляет собой комбинацию одноразрядных сумматоров, с рассмотрения которых мы и начнём. Условное обозначение одноразрядного сумматора на рис. 5.8.


Рис. 5.8

При сложении чисел A и B в одном i-ом разряде приходится иметь дело с тремя цифрами:

1. цифра ai первого слагаемого;

2. цифра bi второго слагаемого;

3. перенос pi–1 из младшего разряда.

В результате сложения получаются две цифры:

1. цифра ci для суммы;

2. перенос pi из данного разряда в старший.

Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:

Входы Выходы
Первое слагаемое Второе слагаемое Перенос Сумма Перенос

Если требуется складывать двоичные слова длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Например, схема вычисления суммы C = (с3 c2 c1 c0) двух двоичных трехразрядных чисел A = (a2 a1 a0) и B = (b2 b1 b0) может иметь вид:


5.10. Как составить таблицу истинности?
 

 

Согласно определению, таблица истинности логической формулы выражает соответствие между всевозможными наборами значений переменных и значениями формулы. Для формулы, которая содержит две переменные, таких наборов значений переменных всего четыре: (0,0), (0,1), (1,0), (1,1). Если формула содержит три переменные, то возможных наборов значений переменных восемь: (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Количество наборов для формулы с четырьмя переменными равно шестнадцати и т.д. Удобной формой записи при нахождении значений формулы является таблица, содержащая кроме значений переменных и значений формулы также и значения промежуточных формул. Примеры. 1. Составим таблицу истинности для формулы, которая содержит две переменные x и y. В первых двух столбцах таблицы запишем четыре возможных пары значений этих переменных, в последующих столбцах — значения промежуточных формул и в последнем столбце — значение формулы. В результате получим таблицу:
Переменные Промежуточные логические формулы Формула

Из таблицы видно, что при всех наборах значений переменных x и y формулапринимает значение 1, то есть является тождественно истинной.

2. Таблица истинности для формулы:

Переменные Промежуточные логические формулы Формула

Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 0, то есть является тождественно ложной.

3. Таблица истинности для формулы:

Переменные Промежуточные логические формулы Формула

Из таблицы видно, что формулав некоторых случаях принимает значение 1, а в некоторых — 0, то есть является выполнимой.

 
5.11. Как упростить логическую формулу?
 

 

Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определённому виду путем использования основных законов алгебры логики.
Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Покажем на примерах некоторые приемы и способы, применяемые при упрощении логических формул:

1)
(законы алгебры логики применяются в следующей последовательности: правило де Моргана, сочетательный закон, правило операций переменной с её инверсией и правило операций с константами);

2)
(применяется правило де Моргана, выносится за скобки общий множитель, используется правило операций переменной с её инверсией);

3)
(повторяетсявторойсомножитель, что разрешено законом идемпотенции; затем комбинируются два первых и два последних сомножителя и используется закон склеивания);

4)
(вводится вспомогательный логический сомножитель (); затем комбинируются два крайних и два средних логических слагаемых и используется закон поглощения);

5)
(сначаладобиваемся, чтобы знак отрицания стоял только перед отдельными переменными, а не перед их комбинациями, для этого дважды применяем правило де Моргана; затем используем закон двойного отрицания);

6)
(выносятся за скобки общие множители; применяется правило операций с константами);

7)
(к отрицаниям неэлементарных формул применяется правило де Моргана; используются законы двойного отрицания и склеивания);

8)
(общий множитель x выносится за скобки, комбинируются слагаемые в скобках — первое с третьим и второе с четвертым, к дизъюнкции применяется правило операции переменной с её инверсией);

9)
(используются распределительный закон для дизъюнкции, правило операции переменной с ее инверсией, правило операций с константами, переместительный закон и распределительный закон для конъюнкции);

10)
(используются правило де Моргана, закон двойного отрицания и закон поглощения).

Из этих примеров видно, что при упрощении логических формул не всегда очевидно, какой из законов алгебры логики следует применить на том или ином шаге. Навыки приходят с опытом.

5.12. Что такое переключательная схема?
 

 

В компьютерах и других автоматических устройствах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. Разработка таких схем весьма трудоёмкое дело. Оказалось, что здесь с успехом может быть использован аппарат алгебры логики.
Переключательная схема — это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Будем считать, что два переключателя Х и связаны таким образом, что когда Х замкнут, то разомкнут, и наоборот. Следовательно, если переключателю Х поставлена в соответствие логическая переменная х, то переключателю должна соответствовать переменная .

Всей переключательной схеме также можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю — если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости.

Найдем функции проводимости F некоторых переключательных схем:

a)

Схема не содержит переключателей и проводит ток всегда, следовательно F=1;

б)

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

в)

Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x;

г)

Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) =;

д)

Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = xЧy;

е)

Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y;

ж)

Схема состоит из двух параллельных ветвей и описывается функцией .

Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале). Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И. Журавлев, С.В. Яблонский и др.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работысводится к следующим трём этапам:

1. составлению функции проводимости по таблице истинности, отражающей эти условия;
2. упрощению этой функции;
3. построению соответствующей схемы.


АНАЛИЗ СХЕМЫ сводится к

1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.
2. получению упрощённой формулы.


Примеры.

1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов.

Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид F(x, y, z, t) = t Ч (x v y v z), а схема выглядит так:




2. Построим схему с пятью переключателями, которая проводит ток в том и только в том случае, когда замкнуты ровно четыре из этих переключателей.

Схема имеет вид:


3. Найдем функцию проводимости схемы:


Решение. Имеется четыре возможных пути прохождения тока при замкнутых переключателях a, b, c, d, e : через переключатели a, b; через переключатели a, e, d; через переключатели c, d и через переключатели c, e, b. Функция проводимости F(a, b, c, d, e) = aЧb v aЧ eЧd v cЧd v cЧeЧb.

4. Упростим переключательные схемы:

а)

Решение:

Упрощенная схема:

б)

.

Здесь первое логическое слагаемое является отрицанием второго логического слагаемого , а дизъюнкция переменной с ее инверсией равна 1.

Упрощенная схема :

в)

Упрощенная схема:

г)

Упрощенная схема:

д)

(по закону склеивания)

Упрощенная схема:

е)

Решение:

Упрощенная схема:

5.13. Как решать логические задачи?
 

 

Разнообразие логических задач очень велико. Способов их решения тоже немало. Но наибольшее распространение получили следующие три способа решения логических задач:

    • средствами алгебры логики;
    • табличный;
    • с помощью рассуждений.

Познакомимся с ними поочередно.


I. Решение логических задач средствами алгебры логики


Обычно используется следующая схема решения:

1. изучается условие задачи;
2. вводится система обозначений для логических высказываний;
3. конструируется логическая формула, описывающая логические связи между всеми высказываниями условия задачи;
4. определяются значения истинности этой логической формулы;
5. из полученных значений истинности формулы определяются значения истинности введённых логических высказываний, на основании которых делается заключение о решении.


Пример 1. Трое друзей, болельщиков автогонок "Формула-1", спорили о результатах предстоящего этапа гонок.

— Вот увидишь, Шумахер не придет первым, — сказал Джон. Первым будет Хилл.

— Да нет же, победителем будет, как всегда, Шумахер, — воскликнул Ник. — А об Алези и говорить нечего, ему не быть первым.

Питер, к которому обратился Ник, возмутился:

— Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.

По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки?

Решение. Введем обозначения для логических высказываний:

Ш — победит Шумахер; Х — победит Хилл; А — победит Алези.

Реплика Ника "Алези пилотирует самую мощную машину" не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается.

Зафиксируем высказывания каждого из друзей:


Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание


Высказывание истинно только при Ш=1, А=0, Х=0.

Ответ. Победителем этапа гонок стал Шумахер.

Пример 2. Некий любитель приключений отправился в кругосветное путешествие на яхте, оснащённой бортовым компьютером. Его предупредили, что чаще всего выходят из строя три узла компьютера — a, b, c, и дали необходимые детали для замены. Выяснить, какой именно узел надо заменить, он может по сигнальным лампочкам на контрольной панели. Лампочек тоже ровно три: x, y и z.

Инструкция по выявлению неисправных узлов такова:

1. если неисправен хотя бы один из узлов компьютера, то горит по крайней мере одна из лампочек x, y, z;
2. если неисправен узел a, но исправен узел с, то загорается лампочка y;
3. если неисправен узел с, но исправен узел b, загорается лампочка y, но не загорается лампочка x;
4. если неисправен узел b, но исправен узел c, то загораются лампочки x и y или не загорается лампочка x;
5. если горит лампочка х и при этом либо неисправен узел а, либо все три узла a, b, c исправны, то горит и лампочка y.


В пути компьютер сломался. На контрольной панели загорелась лампочка x. Тщательно изучив инструкцию, путешественник починил компьютер. Но с этого момента и до конца плавания его не оставляла тревога. Он понял, что инструкция несовершенна, и есть случаи, когда она ему не поможет.

Какие узлы заменил путешественник? Какие изъяны он обнаружил в инструкции?

Решение. Введем обозначения для логических высказываний:

a — неисправен узел а; x — горит лампочка х;

b — неисправен узел b; y — горит лампочка y;

с — неисправен узел с; z — горит лампочка z.

Правила 1–5 выражаются следующими формулами:


Формулы 1–5 истинны по условию, следовательно, их конъюнкция тоже истинна:


Выражая импликацию через дизъюнкцию и отрицание (напомним, что ), получаем:


Подставляя в это тождество конкретные значения истинности x=1, y=0, z=0, получаем:


Отсюда следует, что a=0, b=1, c=1.

<== предыдущая лекция | следующая лекция ==>
Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица | I. Решение логических задач средствами алгебры логики

Дата добавления: 2014-01-04; Просмотров: 332; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:

  1. К чему приводит возникновение искривлениия поверхности? Что такое капиллярное давление? Дайте критерий меры искривления поверхности.
  2. Лекция 1. Что такое политология.
  3. М.11.20. Что такое крыльчатка и сколько характеристик прочности можно получить с ее помощью?
  4. М.11.8. Что такое полное, эффективное и нейтральное давления? Что называется гидростатическим и поровым давлением?
  5. М.15.2. Что такое заложение откоса? Где находится бровка откоса? Для чего устраиваются бермы?
  6. М.3.19. Что такое показатель консистенции IL (индекс текучести) глинистого грунта и зависит ли он от естественной влажности w? В каких пределах он изменяется?
  7. М.5.1. Что такое напор? Какова его размерность?
  8. М.5.5. Запишите закон Дарси. Какова размерность коэффициента фильтрации? От чего он зависит? Что такое начальный градиент фильтрации?
  9. Такое несоответствие между большой ролью, которую стали играть плебеи, и их бесправным положением, породило борьбу плебеев за уравнение в правах с патрициями.
  10. Такое решение проблемы сущности и существования укреплял дуализм бога и мира, что и нужно было теологии.
  11. Условие: «ЗНАТЬ», что такое инновации
  12. Что же такое МАРКЕТИНГ?

studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.041 сек.