Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Броуновское движение


Лекция 3.Молекулярно-кинетические и оптические свойства коллоидных систем.

Броуновское движение.

Диффузия.

Осмотическое давление коллоидных растворов.

Седиментация в дисперсных системах.

Оптические свойства дисперсных систем.

Явление рассеяния света.

Поглощение (адсорбция) света.

 

Коллоидные частицы по молекулярно-кинетическим свойствам принципиально не отличаются от истинных растворов. Взвешенные в растворе частицы находятся постоянном беспорядочном тепловом движении (Броуновское движение – открыл в 1827 году английский ботаник Р.Броун, наблюдая как микроскопические частицы пыльцы и спор непрерывно и хаотично передвигаются в воде). При столкновении частиц происходит обмен количеством энергии и в результате устанавливается средняя кинетическая энергия, одинаковая для всех частиц. Молекулы (например, газа) движутся со скоростью сотни метров в секунду, коллоидные частицы размером 3-5 мкм - доли миллиметров в секунду, что обусловлено их гигантскими размерами.

Траектория движения частиц, зафиксированная с помощью кинематографической микросъемки имеет вид ломаной линии (рис. 3.1).

Рис. 3.1. Схема перемещения частицы при

броуновском движении.

 

Средняя квадратичная величина всех смещений без учета направления движения равна:

- число смещений (число отрезков ломаной линии);

- отдельные проекции смещения частицы на ось х.

Элементарные исследования броуновского движения проводились Р. Зигмонди, Ж. Перреном, Т. Сведбергом, а теория этого движения была развита Эйнштейном и Смолуховским (1905).

Уравнеие Эйнштейна-Смолуховского для среднего квадратичного смещения частицы за время t при броуновском движении имеет вид:

- универсальная газовая постоянная;

- абсолютная температура;

- вязкость среды;

- радиус взвешенных частиц;

- постоянная Авогадро;

- время.

 

Из уравнения следует вывод – чем крупнее частица, тем меньше величина ее смещения.

Кроме поступательного движения частицы обладают также и вращательным движением.



Для вращательного броуновского движения частиц сферической формы среднее квадратичное значение угла вращения (угла поворота) составит:

Теория Эйнштейна получила многочисленные и неоспоримые доказательства.

Например, блестящим подтверждением теории являлись работы Ж. Перрена, который в своих опытах использовал сферические частицы мастики с точно известным радиусом 1 мкм. Измеряя на этом золе поступательное и вращательное движение частиц при известных значениях Т и h Перрен вычислил постоянную Авогадро NA=6,5×1023.

 

<== предыдущая лекция | следующая лекция ==>
 | 

Дата добавления: 2014-01-04; Просмотров: 409; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.