КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оптимальное исследование рынка
Применение задачи о назначениях к решению экономических проблем
Выше уже был дан пример применения задачи о назначениях к проблеме оптимального выбора руководителей исследовательских проектов. Приведем еще несколько примеров, когда использование задачи о назначениях позволяет найти оптимальное решение экономической задачи.
Группе, исследующей рынок, требуется получить данные из различных мест. В ее распоряжении имеется дней, и она предполагает провести по одному дню в каждом месте, проведя по опросов, . Вероятность успешного опроса в каждом месте задается матрицей . Элемент матрицы характеризует вероятности успешного опроса в течение -го дня в -м месте, ; . Определить время проведения опросов, при котором общее число опросов максимально.
Решение Сведем данную задачу к задаче о назначениях. Введем величину , показывающую число успешных опросов в -м месте в течение -го дня. Математическая модель задачи имеет следующий вид: Функция характеризует суммарное число опросов. Его нужно максимизировать. Первое и второе ограничения соответствуют тому, что в течение одного дня можно находиться только в одном месте. Для расчета модели венгерским методом надо перейти к противоположной функции , и в соответствующей таблице записывать значения с противоположным знаком.
Дата добавления: 2014-01-04; Просмотров: 344; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |