Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия. Управление запасами. Складская задача

Первый месяц

Второй месяц

Третий месяц

Управление запасами. Складская задача.

Эксплуатации.

С кладская задача относится к динамическим детерминированным задачам управления запасами. Следовательно, для решения этой задачи можно применить принцип Беллмана.

 

 

Рассмотрим задачу.

Планируется деятельность предприятия на три месяца.

 

ЗАДАНЫ:

- начальный уровень запасов S0 = 20

- остаток запасов S3 = 0

- затраты на пополнение φ(x) = 0.4x

- затраты на хранение ψ(y) = 0.2y + 1 в данном периоде в зависимости

от y - среднего уровня хранимых запасов.

 

ОПРЕДЕЛИТЬ:

- размеры пополнения запасов в каждом месяце для удовлетворения заданного расхода d1 = 30, d2 = 20, d3 = 30 из условий минимизации суммарных затрат.

Используются формулы Уилсона:

Средний уровень хранения yk = dk/2 + Sk

Уравнение состояния Sk = Sk-1 + xk - dk

Решение:

Задача относится к динамическому программированию и решается с применением принципа Беллмана.

1 этап - от конца к началу проводим условную оптимизацию.

S2 x3 y3 φ(x3) ψ(y3) φ + ψ Z3
             
             
             
             

 

 

 

S1 x2 S2 y2 φ(x2) ψ(y2) Z3 φ + ψ + Z3 Z2
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
0 20 0 10 8 3   27 27
                 
                 
                 

 

S0 x1 S1 y1 φ(x1) ψ(y1) Z2 φ + ψ + Z2 Z1
20 10 0 15 4 4 27 35 35
                 
                 
                 
                 
                 

2 этап – проводим безусловную оптимизацию (анализ решения):

x1 = 10 S1 = 0 y1 = 15 φ(x1) = 4 ψ(y1) = 4

x2 = 20 S2 = 0 y2 = 10 φ(x2) = 8 ψ(y2) = 3

x3 = 30 S3 = 0 y3 = 15 φ(x3) = 12 ψ(y3) = 4

 

Выгодно каждый год докупать ровно столько, чтобы хватило на текущий год.

 

Контрольные вопросы:

 

1.Как решается задача замены оборудования на предприятии?

2.От чего зависит оптимальная стратегия замены оборудования на предприятии?

3.Как учитывается стоимость нового оборудования и остаточная стоимость оборудования при решении задачи?

4.Как учитывается возраст оборудования с началом его эксплуатации в новом плановом периоде?

5.Сформулируйте экономический смысл всех переменных и обозначений.

6.Основные формулы при решении задачи замены оборудования.

7.Как составить матрицу максимальных прибылей?

8.Как решается задача пополнения запасов?

9.Поясните обозначения в формуле Уилсона.

10.Анализ решения складской задачи.

 

8. Лекция. Элементы теории игр.

 

 

Теория игр - это математическая теория, исследующая конфликтные ситуации, в которых принятие решений зависит от нескольких участников.

Математическая модель конфликтной ситуации называется игрой. Стороны, участвующие в конфликте - игроки, а исход конфликта - выигрыш (проигрыш). Выигрыш или проигрыш может быть задан количественно.

Игра называется антагонистической или игрой с нулевой суммой, если выигрыш одного из игроков равен проигрышу другого, поэтому для полного «задания» игры достаточно указать величину выигрыша первого игрока.

Стратегией игрока называется совокупность принципов, определяющих выбор его действий при каждом личном ходе в зависимости от сложившейся ситуации.

Для того чтобы найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй игрок придерживается своей стратегии. В тоже время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.

Такие стратегии называются оптимальными.

При выборе оптимальной стратегии следует полагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Матрица, элементы которой характеризуют выигрыш первого игрока (МЫ –игрок А) и проигрыш второго (игрок В) при их возможных стратегиях (обозначается | αij |), называется платежной матрицей игры.

Величина α = max min a ij называется нижней ценой игры –

j i

гарантированный выигрыш игрока А при применении игроком В своих стратегий. Находится путем выбора минимального значения из a ij в каждой строке платежной матрицы игры (получаем столбец) и из этих минимальных значений находится максимальное, которое и соответствует нижней цене игры α.

 

Величина β = min max a ij называется верхней ценой игры –

i j

минимальный проигрыш игрока В при применении игроком А своих стратегий. Находится путем выбора максимального значения из a ij по столбцам (получим строку) и из этих максимальных значений находится минимальное значение, которое и соответствует верхней цене игры β.

 

Выигрыш, соответствующий оптимальному решению, называется ценой игры γ. Цена игры удовлетворяет неравенству α ≤ γ ≥ β.Такие игры называются играми в смешанных стратегиях.

Если нижняя и верхняя цены игра совпадают, то их общее значение

α = β = γ чистой ценой игры или седловой точкой. Такие игры называются играми в чистых стратегиях.

Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями, а их совокупность (АiВj) – оптимальным решением или решением игры.

Игра, в которой интересы игроков противоположны называется антагонистичной.

 

В некоторых задачах, приводящихся к игровым, имеется неопределенность, вызванная отсутствием информации об условиях, в которых осуществляется действие (погода, покупательский спрос и т.п.). Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности. Такие игры называются играми с «природой».

Человек в играх с «природой» старается действовать осмотрительно, второй игрок (природа и т.п.) действует случайно.

При решении задач, относящихся к теории игр, необходимо правильно классифицировать задачу, потому что методы, применяемые к антагонистическим играм кардинально отличаются от методов решения игр с природой.

 

<== предыдущая лекция | следующая лекция ==>
Лекция . Управление производством . Управление запасами | Геометрический метод решения задач теории игр
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 606; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.