Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифференциальные зависимости при изгибе

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx. Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Qy и Mz в общем случае меняются вдоль оси балки, то в сечениях элемента dx будут возникать поперечные силы Qy и Qy+ dQy, а также изгибающие моменты Mz и Mz+dMz.

Из условия равновесия выделенного элемента получим:

, следовательно

; (6.5)

, следовательно

.(6.6)

Первое из двух записанных уравнений дает условие

. (6.7)

Из второго уравнения, пренебрегая слагаемым как бесконечно малой величиной второго порядка, найдем

(6.8)

Рассматривая полученные выражения, совместно можем получить

(6.9)

Полученные соотношения (6.7 – 6.9) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил:

- на участках, где нет распределенной нагрузки q, эпюры Q ограничены прямыми, параллельными осевой линии балки, а эпюры М – наклонными прямыми;

- на участках, где к балке приложена распределенная нагрузка q, эпюры Q ограничены наклонными прямыми, а эпюры М – квадратичными параболами. При этом, если эпюру М строим «на сжатом волокне», то выпуклость параболы будет направлена против направления действия q, а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию;

- в сечениях, где к балке прикладывается сосредоточенная сила, на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М - перегибы, острием направленные в направлении действия этой силы;

- в сечениях, где к балке прикладывается сосредоточенный момент, на эпюре Q изменений не будет, а на эпюре М – скачок на величину этого момента;

- на участках, где Q > 0, момент М возрастает, а на участках, где
Q < 0, момент М убывает.

<== предыдущая лекция | следующая лекция ==>
Определение внутренних усилий при изгибе | Гипотеза плоских сечений (гипотеза Бернулли)
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 413; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.