Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Резонанс токов. Рассмотрим цепь с двумя параллельными ветвями на рис

 

Рассмотрим цепь с двумя параллельными ветвями на рис. 3.22.


Такую цепь часто называют параллельным контуром. Условием возникновения резонанса является равенство реактивных проводимостей:

, (3.57)

. (3.58)

. (3.59)

При противоположные по фазе реактивные составляющие токов равны, поэтому резонанс в рассматриваемой цепи получил название резонанса токов.

Из векторной диаграммы на рис. 3.23а видно, что при резонансе ток на выходных выводах контура может быть значительно меньше токов в отдельных ветвях.

При резонансе общий ток в параллельном контуре по фазе совпадает с приложенным напряжением.

Добротность контура показывает во сколько раз ток в ветви превышает питающий ток и определяется следующим соотношением:

 

, (3.60)

где ,

 

- эквивалентное активное сопротивление при резонансе:

- если . (3.61)

В общем случае резонансная частота определяется по формуле:

, (3.62)

где - резонансная угловая частота при - аналогичная последовательному контуру.

В теоретическом случае при токи и сдвинуты по фазе относительно напряжения на углы (рис. 3.23б) и суммарный ток . Входное сопротивление цепи при этом бесконечно велико.

Как видно из формулы 3.62 резонанс возможен, если сопротивления оба больше или оба меньше ρ.

Если , то резонансная частота имеет любое значение, то есть резонанс наблюдается на любой частоте.

На рис. 3.24 показаны частотные характеристики проводимостей ветвей и , и входной проводимости цепи .

При изменении частоты от 0 до эквивалентная проводимость , то есть индуктивная и изменяется от до 0. При наступает резонанс токов, .

При возрастании частоты от до входная проводимость , то есть имеет емкостной характер и изменяется от 0 до .

 

<== предыдущая лекция | следующая лекция ==>
Резонанс напряжений | Частотные характеристики пассивных двухполюсников
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 290; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.044 сек.