КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция № 5. Химическая связь. Строение вещества
Все вещества образуются в результате возникновения между атомами, входящими в их состав, прочных связей, называемых химическими. Химическая связь осуществляется в результате электростатического взаимодействия положительно заряженных атомных ядер и отрицательно заряженных электронов, а также электронов друг с другом. Различают три основных вида химической связи – ионная, ковалентная и металлическая. В чистом виде каждый из перечисленных видов связи встречается крайне редко. Кроме основных видов связи существуют различные типы межмолекулярных взаимодействий – вандерваальсовы взаимодействия (диполь-дипольное, индукционное, дисперсионное), водородная связь и др. Строение и свойства молекул или других частиц характеризуются рядом параметров химической связи – энергией связи, длиной связи (межатомные расстояния), валентным углом (угол между воображаемыми прямыми, проходящими через ядра атомов). Химическая связь образуется только в том случае, если при сближении атомов (двух или более) полная энергия системы (сумма кинетической и потенциальной энергий) понижается. Количество энергии, выделяющееся при образовании химической связи, называется энергий связи и измеряется в кДж/моль. Энергия связи является мерой ее прочности – чем выше энергия связи, тем прочнее молекула, тем ниже длина связи. ИОННАЯ СВЯЗЬ Ионная химическая связь образуется в результате электростатического взаимодействия отрицательно и положительно заряженных ионов. Условием образования ионной связи является большая разность в значениях электроотрицательности атомов, образующих молекулу. Считается, что ионная связь образуется между элементами, разность в электроотрицательности которых достигает или превышает 2,0. К наиболее типичным соединениям с ионной связью относятся галогениды щелочных и щелочноземельных металлов. При образовании ионной связи атомы стремятся отдать или принять такое число электронов, чтобы строение их внешней электронной оболочки оказалось аналогичным строению ближайшего к ним инертного газа (восемь электронов на внешнем энергетическом уровне). Например, хлорид натрия (NaC1) состоит из катионов Na+ и анионов C1-, которые являются продуктами в результате окисления атомов натрия и восстановления атомов хлора: Na – 1ē = Na+ (1s22s22p6) Cl + 1ē = Cl- (1s22s22p63s23p6) При обычных условиях ионные соединения представляют собой кристаллические вещества. В кристаллической решетке ионных соединений ион одного знака окружен определенным количеством ионов противоположного знака, число которых определяется соотношением ионного радиуса. Каждый ион притягивает к себе ионы противоположного знака в любом направлении. Поэтому, ионная связь характеризуется ненаправленностью и ненасыщаемостью. КОВАЛЕНТНАЯ СВЯЗЬ В молекулах, образованных атомами с близкими значениями электроотрицательности, реализуется ковалентная связь. Ковалентная связь образуется путем обобществления пары электронов двумя атомами. В образовании ковалентной связи принимают участие так называемые «валентные» электроны – электроны внешней оболочки атома. В случае образования двухатомной молекулы, например Н2, сближение двух атомов приводит к взаимному проникновению их атомных орбиталей друг в друга (рис.1). При этом электронная плотность в межъядерном пространстве увеличивается и способствует притяжению ядер. Ядра атомов притягиваются друг к другу, энергия системы понижается. Выделяемая при этом энергия, называется энергией связи. Расстояние между ядрами имеет оптимальное значение, характеризуемое длиной связи. Сближение ядер на более близкое расстояние приводит к их взаимному отталкиванию. Н Н Н2 рис. 1 При образовании молекулы между одинаковыми атомами (молекулы водорода, кислорода, азота, хлора) область максимального перекрывания атомных орбиталей находится на одинаковом расстоянии от обоих ядер. Такая связь называется ковалентной неполярной связью. В таких молекулах электронная пара в одинаковой мере принадлежит обоим атомам. К неполярным относятся любые двухатомные гомоядерные молекулы – Н2, N2, О2, F2, С12, Br2, I2 и др. В случае, когда в образовании связи принимают участие разные атомы (с разной электроотрицательностью), электронная плотность смещена к более электроотрицательному атому. Такая связь называется ковалентной полярной связью. Примером молекул с такой связью могут служить галогеноводороды (НС1, НBr, HI), вода, сероводород (H2S), аммиак (NH3), оксиды углерода (CO, CO2) и др. Ковалентная связь характеризуется насыщаемостью и направленностью. Направленность выражается значениями валентных углов, насыщаемость определяется количеством электронов, способных участвовать в образовании связи. Лекция № 6. Метод валентных связей. Метод молекулярных орбиталей Структура и свойства молекул с ковалентной связью объясняются с позиций метода валентных связей (ВС) и метода молекулярных орбиталей (ММО). МЕТОД ВАЛЕНТНЫХ СВЯЗЕЙ (ВС) 1. По методу ВС химическая связь между двумя атомами возникает в результате перекрывания атомных орбиталей (АО) с образованием электронных пар. 2. Образованная электронная пара локализована между двумя атомами. Такая связь является двухцентровой и двухэлектронной. 3. Химическая связь образуется только при взаимодействии электронов с антипараллельными спинами. 4. Характеристики химической связи (энергия, длина, полярность, валентные углы) определяется типом перекрывания АО. 5. Ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов. В образовании ковалентной связи могут принимать участие АО как одинаковой, так и различной симметрии. При перекрывании АО вдоль линии соединения атомов образуется s-связь (рис.2). s-s s-p p-p d-d рис. 2 При перекрывании АО по обе стороны от линии соединения атомов образуется p-связь (рис.3). p-p p-d d-d рис. 3 При перекрывании всех четырех лопастей d-АО, расположенных в параллельных плоскостях, образуется d-связь. Примеры образования молекул по методу ВС. В молекуле фтора F2 связь образована 2р-орбиталями атомов фтора (рис.4):
В молекуле фтороводорода НF связь образована 1s-орбиталью атома водорода и 2р-орбиталью атома фтора (рис.5):
ГИБРИДИЗАЦИЯ АТОМНЫХ ОРБИТАЛЕЙ Для объяснения строения некоторых молекул в методе ВС применяется модель гибридизации атомных орбиталей (АО). У некоторых элементов (бериллий, бор, углерод) в образовании ковалентных связей принимают участие как s-, так и p-электроны. Эти электроны расположены на АО, различающихся по форме и энергии. Несмотря на это связи, образованные с их участием, оказываются равноценными и расположены симметрично. В молекулах ВеС12, ВС13 и СС14, например, валентный угол С1-Э-С1 равен 180, 120, и 109.28о. Значения и энергии длин связей Э-С1 имеют для каждой из этих молекул одинаковое значение. Принцип гибридизации орбиталей состоит в том, что исходные АО разной формы и энергии при смешении дают новые орбитали одинаковой формы и энергии. Тип гибридизации центрального атома определяет геометрическую форму молекулы или иона, образованного им. Рассмотрим с позиций гибридизации атомных орбиталей строение ряда молекул.
Рассмотрим с позиций гибридизации молекулу ацетилена С2Н2. В молекуле ацетилена каждый атом углерода находится в sp-гибридном состоянии, образуя две гибридные связи, направленные под углом 180° друг к другу. Как в случае связей С-С, так и в случае связей С-Н возникает общее двухэлектронное облако, образующее σ-связи. Но в молекуле ацетилена в каждом из атомов углерода содержится еще по два р-электрона, которые не принимают участия в образовании σ-связей. Молекула ацетилена имеет плоский линейный «скелет», поэтому оба р-электронных облака в каждом из атомов углерода выступают из плоскости молекулы в перпендикулярном к ней направлении. При этом происходит также некоторое взаимодействие электронных облаков, но менее сильное, чем при образовании σ-связей. В итоге в молекуле ацетилена образуются еще две ковалентные углерод-углеродные связи, называемые p-связями (рис.9).
МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ (МО) В основе метода молекулярных орбиталей лежит положение о том, что при образовании химической связи атомные орбитали атомов утрачивают свою индивидуальность. В результате комбинации этих атомных орбиталей возникают молекулярные орбитали сложной формы, принадлежащие всей молекуле в целом, т. е. являющиеся многоцентровыми. Образование молекулярных орбиталей из атомных изображают в виде энергетических диаграмм, где по вертикали откладывают значения энергии. Комбинация АО приводит к двум типам МО. Связывающие МО характеризуются повышенной концентрацией электронной плотности между ядрами атомов и более низким уровнем энергии (в сравнении с исходными АО). Нахождение электронов на таких орбиталях энергетически выгодно и приводит к образованию связи. Разрыхляющие МО характеризуются пониженной концентрацией электронной плотности между ядрами и более высоким уровнем энергии (в сравнении с исходными АО). Нахождение электронов на таких орбиталях энергетически невыгодно и не приводит к образованию связи. Разрыхляющие МО иначе называют антисвязывающими. Заполнение МО осуществляется в порядке возрастания энергии и согласуется с принципом Паули и правилом Гунда. С позиций метода МО возможно объяснение образования химической связи для частиц с одним электроном, например, Н2+. Возможность и невозможность образования простейших двухатомных молекул по методу МО можно рассмотреть на примере Н2 и Не2 (рис.10).
Лекция № 7. Энергетика химических процессов Химическая реакция – это процесс, при котором одни соединения разлагаются, другие образуются, в результате одни химические связи заменяются другими. Как следствие химические реакции сопровождаются выделением или поглощением теплоты. Реакции, протекающие с выделением теплоты в окружающую среду, называются экзотермическими, а с поглощением теплоты – эндотермическими. Количество теплоты, которое выделяется или поглощается при химической реакции, называется тепловым эффектом реакции. Тепловой эффект реакции, протекающей в условиях р=const, T=const, равен изменению энтальпии системы ∆Н и измеряется в кДж. При экзотермической реакции энтальпия системы уменьшается и ∆Н < 0, а при эндотермической – энтальпия системы увеличивается и ∆Н > 0. Если исходные вещества и продукты реакции находятся в стандартном состоянии, то энтальпию реакции называют стандартной и обозначают ∆Н0 или ∆. Верхний индекс отвечает стандартному давлению (101кПа), нижний индекс соответствует стандартной температуре, принятой по международному соглашению, равной 298 К. Уравнения химических реакций, в которых указаны изменения энтальпии (тепловые эффекты реакций), называются термохимическими. Например, термохимическое уравнение N2(г) + 3Н2 (г) = 2NH3 (г), ∆= –92, 4 кДж. показывает, что при взаимодействии 1 моль N2 и 3 моль Н2 образуется 2 моль NH3 и выделяется количество теплоты, равное 92,4 кДж. Термохимические уравнения подчиняются закону Лавуазье-Лапласа: тепловой эффект прямой реакции равен по абсолютному значению и противоположен по знаку тепловому эффекту обратной реакции. Закон Лавуазье-Лапласа носит частный характер, в основе термохимических расчетов лежит фундаментальный закон термохимии – закон Гесса: тепловой эффект химической реакции зависит только от начального и конечного состояний веществ и не зависит от промежуточных стадий процесса. Из закона Гесса следует два важных следствия. Первое следствие: тепловой эффект получения любого вещества не зависит от способа его получения. Так как энтальпия образования вещества зависит от его состояния и от условий, все энтальпии образования отнесены к одинаковым состояниям и условиям, которые называют стандартными. Стандартная энтальпия реакции образования 1 моля сложного вещества из простых веществ, устойчивых при 298 К и давлении 101 кПа называется стандартной энтальпией образования. Обозначается ∆ или ∆Н0 (температуру 298 К можно опустить), измеряется в кДж/моль. Следует отметить, ∆Н0 простых веществ равна нулю. В термохимических расчетах более часто применяют второе следствие из закона Гесса: энтальпия химической реакции равна сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов реакции. Например, стандартная энтальпия реакции aA+bB=сС+dD определяется по формуле: , где ∆Н0 – стандартная энтальпия образования соединения. Направление протекания химической реакции определяет энергия Гиббса (∆G). При р=const, T=const реакция самопроизвольно протекает в том направлении, которому отвечает убыль энергии Гиббса. Если ∆G < 0, то реакция самопроизвольно протекает в прямом направлении. Если ∆G > 0, то самопроизвольное протекание процесса в прямом направлении невозможно. Если ∆G = 0, то реакция может протекать как в прямом направлении, так и в обратном, и система находится в состоянии равновесия. Изменение ∆не зависит от пути процесса и может быть рассчитано по следствию из закона Гесса: изменение энергии Гиббса в результате химической реакции равно сумме энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов. Например, стандартная энергия Гиббса реакции aA + bB = сС , где ∆G0 – стандартная энергия Гиббса образования вещества, кДж/моль. Энергия Гиббса образования простых веществ равна нулю. ∆имеет ту же размерность, что и энтальпия, и поэтому обычно выражается в кДж. Изменение стандартной энергии Гиббса химической реакции может быть также вычислено по уравнению: ∆= ∆– Т∆, где Т – абсолютная температура, ∆ – изменение энтропии. Энтропия – это мера неупорядоченности состояния системы; стремление частиц (молекул, ионов, атомов) к хаотическому движению, а системы – к переходу от более упорядоченного состояния к менее упорядоченному. Энтропия возрастает с увеличением движения частиц при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядоченностью системы (конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация), сопровождаются уменьшением энтропии. Измеряется энтропия в Дж/моль×К. Изменение энтропии системы в результате протекания химической реакции (∆S) (энтропия реакции) равно сумме энтропий продуктов реакции за вычетом суммы энтропий исходных веществ с учетом стехиометрических коэффициентов. Изменение энтропии в результате протекания химической реакции aA + bB = сС + dD: . Энтропия также является критерием возможности самопроизвольного протекания процесса: в изолированной системе самопроизвольно могут протекать только такие процессы, которые ведут к увеличению неупорядоченности системы, т.е. к росту энтропии. При химическом взаимодействии одновременно изменяется энтальпия, характеризующая стремление системы к порядку, и энтропия, характеризующая стремление системы к беспорядку. Если тенденции к порядку и беспорядку в системе одинаковы, то ∆= Т∆, что является условием равновесного состояния системы. Если пренебречь изменениями ∆H0х.р. и ∆S0х.р с увеличением температуры, то можно определить температуру, при которой устанавливается равновесие химической реакции для стандартного состояния реагентов: Травн. =
Дата добавления: 2014-01-04; Просмотров: 1694; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |