КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
I закон термодинамики
ЧАСТЬ 1). Лекция №7,8: Основы термодинамики. I,II и III начало термодинамики. Основы термодинамических расчетов Термодинамика - наука, изучающая закономерности процессов, сопровождающихся взаимным превращением различных видов энергии (например, взаимные превращения тепла и работы). Объектом исследования в термодинамике являются только макроскопические системы. Термодинамический метод широко используется при исследовании самых разнообразных систем, в том числе геологических, металлургических, обогатительных и других. Этот метод позволяет определить количественные соотношения при превращении различных видов энергии, установить возможность протекания данного процесса и его глубину, т.е. равновесное состояние, до которого он может протекать в данных условиях. Термодинамику формируют три основных закона (или Начала). Первый закон термодинамики формулируется следующим образом: «Невозможно создать вечный двигатель первого рода (perpetuum mobile), т.е. такой, который производил бы работу без каких-либо затрат энергии». В раскрытии этого закона важную роль сыграли работы Гесса, Майера, Джоуля, Гельмгольца и др. Из этого закона следует принцип эквивалентности между теплотой и работой. Математическая запись данного закона выражается следующими уравнениями: Q=DU+W dQ=dU+dW Теплота, полученная системой (dQ; Q), расходуется на работу (dW; W), совершаемую системой и увеличение ее внутренней энергии (dU; DU). Из этих трех энергетических величин только внутренняя энергия является функцией состояния системы и поэтому однозначно определяется параметрами системы (т.е. она является полным дифференциалом). Теплота и работа представляют собой формы передачи энергии и поэтому являются функциями процессов. Они не являются полными дифференциалами. Работа делится на совершаемую против внешних сил, т.е. работу расширения dWрас=PdV; Wрас=òPdV; W=-òVdP и работу, не связанную с изменением объема, условно называемую ’’полезной’’ dW/, W/= ådW/ Последняя может совершаться только при изменении состава системы. Теплота зависит от теплоемкости системы (с) и температуры Q=ådQ=ònC(T)dT Следует учитывать, что сама теплоемкость тоже зависит от температуры. Эта зависимость выражается уравнением (для случая, когда Т>Т0=298К): с(T)=a+bT+cT2+ c/T-2 Где: а, в, с, с/ - коэффициенты, зависящие от природы и агрегатного состояния вещества, определены экспериментально и приведены в справочниках физико-химических величин. При использовании различных справочников результаты расчетов могут несколько отличаться. В случае приближенных расчетов обычно достаточно использование выражения: с(Т)=а+bТ Для газообразных веществ различают теплоемкости при постоянном объеме (сv) и постоянном давлении (ср). Связь между этими величинами определяет уравнение Майера: сp-сv=R Если ср,сv – мольные, то R=const=8,31Дж/моль×К сp-сv=R Если ср,сv – массовые, то R=Rуд¹const Например, для воздуха значение этой величины при н.у. равно ~280 Дж/кг×К Для идеальных газов теплоемкости постоянны и без учета энергии колебательного движения молекул (что справедливо при сравнительно невысоких температурах) равны: - для одноатомных молекул сV=R×3/2; - для двухатомных и линейных многоатомных молекул сV=R×5/2; - для нелинейных трехатомных и многоатомных молекул сV=3×R. Используя соотношение между теплоемкостями при постоянном давлении и постоянном объеме, выражают следующую величину показателя адиабаты: g=сP/сV значение которого для идеального газа зависит только от числа атомов в молекуле газа. Для теплоемкостей можно использовать и такие выражения как: сP=gR/(g-1) сv=R/(g-1) для одноатомных газов g=5/3=1,67 для двухатомных газов g=7/5=1,40 для трехатомных газов g=9/7=1,30 Для жидких и твердых веществ теплоемкости ср и сV близки по величине: ср @сV Для систем, не совершающих полезной работы (W/=0), первый закон термодинамики принимает вид: dQ=dU+PdV при V=const dQv=dU, Qv=DU при V=const dQP=dU+PdV=d(U+PV) Величина Н=U+PV называется энтальпией (или теплосодержанием системы). Энтальпия, подобно внутренней энергии, является функцией состояния системы и определяется ее параметрами: dQp=dH, QP=DH.
Дата добавления: 2014-01-04; Просмотров: 1047; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |