Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Систематические коды. Код Хэмминга

Систематические коды представляют собой такие коды, в которых информационные и корректирующие разряды расположены по строго определенной системе и всегда занимают строго определенные места в кодовых комбинациях.

Систематические коды являются равномерными, т. е. все комбинации кода с заданными корректирующими способностями имеют одинаковую длину. Систематические коды могут строиться, как линейные на основе производящей матрицы, как это уже было рассмотрено.

Обычно производящая матрица строится при помощи двух матриц:

Единичной, ранг которой определяется числом информационных разрядов, и добавочной, число столбцов которой определяется числом контрольных разрядов кода. Каждая строка добавочной матрицы должна содержать не менее d0 -1 единиц, а сумма по модулю для любых строк не менее d0-2 единиц (где d0 - минимальное кодовое расстояние).

Производящая матрица позволяет находить все остальные кодовые комбинации.

Код Хэмминга является типичным примером систематического кода. Однако при его построении к матрицам обычно не прибегают. Он настолько хорошо изучен, что уже выработался четкий алгоритм его построения:

Код Хэмминга представляет собой один из важнейших классов линейных кодов, нашедших широкое применение на практике и имеющих простой и удобный для технической реализации алгоритм обнаружения и исправления ошибок.

Соотношения между n, r, k для кода Хэмминга представлены в таблице. Зная основные параметры корректирующего кода, определяют, какие позиции сигналов будут рабочими, а какие - контрольными. Практика показала, что номера контрольных символов удобно выбирать по закону

2i, где i = 0, 1, 2, 3,... - натуральный ряд чисел.

Номера контрольных символов в этом случае равны 1, 2, 4, 16, 32... Затем определяют значения контрольных коэффициентов (0 или 1), руководствуясь следующим правилом:

сумма единиц на проверочных позициях должна быть четной. Если эта сумма четна -значение контрольного коэффициента нуль, в противном случае - единица.

 

Соотношения между количеством информационных и контрольных символов в коде Хэмминга

 

 

Проверочные позиции выбирают следующим образом. Составляют табличку для ряда натуральных чисел в двоичном коде. Число ее строк n=r+k. Первой строке соответствует проверочный коэффициент a 1, второй а2 и т. д.:

 

 

Затем выявляют проверочные позиции, выписывая коэффициенты по следующему принципу:

в первую проверку входят коэффициенты, которые содержат единицу в младшем разряде (a1, а3, a5, a7, a9, a11 и т. д.);

во вторую - во втором разряде (а2, а3, а5, а7, а9, a11 и т. д.);

в третью - в третьем разряде и т. д.

Номера проверочных коэффициентов соответствуют номерам проверочных позиций, что позволяет составить общую таблицу проверок.

Номера проверочных позиций кода Хэмминга

 

 

<== предыдущая лекция | следующая лекция ==>
Порядок декодирования | Построение кода Хэмминга
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1525; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.