КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Практические соображения при оценке экспертных вероятностей
Поскольку экспертные оценки вероятностей, сделанные одним человеком, не всегда являются логически согласованными (после его первой попытки), исследователь должен обнаружить внутренние несоответствия и указать на них данному эксперту. Замечено, что люди систематически используют эвристические соображения при оценке неизвестных величин. Первым шагом на пути создания процедур для устранения личных предубеждений является их изучение. И наконец, прежде чем полагаться на суждения экспертов, следует проверить их откровенность и правдивость. Указанные соображения привели к понятию функции вознаграждения (или правилам ранжирования), когда высказыванию каждого из экспертов приписывается некоторое количество очков. Трудность использования экспертных оценок вероятностей связана с тем, что полученные результаты требуют достаточно громоздкой процедуры обработки и не могут быть использованы непосредственно. К счастью, некоторые результаты теории статистических решений сильно упрощают как сам процесс оценок, так и последующий анализ. Основная идея состоит в выборе р(Е) или f(х) из определенного класса функций, с которыми проще работать. Для примера возьмем функцию f(х), хотя те же идеи применимы и для p(Е). Было бы очень хорошо, если бы функция f(х) принадлежала к классу распределений вероятностей, зависящих от небольшого числа параметров, которые обозначим через . Тогда можно записать f(х|) и для того, чтобы полностью определить функцию f, требуется оценить только величины . Например, если функция относится к классу нормальных распределений, то она полностью определяется средним значением и дисперсией. Обычно намного легче оценить эти два параметра, чем получить все распределение вероятностей; как описывалось в подразделе 2.7.4. Пусть класс функций достаточно полный в том смысле, что широкий диапазон суждений можно выразить при помощи некоторой функции из этого класса. Тогда, видимо, мы не сделаем большой ошибки, если сначала предположим, что неопределенность в суждениях можно описать некоторой функцией из того же класса. Другим преимуществом при выборе функции из заданного класса является то, что такую функцию относительно просто изменить при помощи теоремы Байеса. Например, для некоторых классов функций и некоторых методов выборки апостериорная плотность вероятности f'(х) [формула (2.15)] может быть функцией из того же класса, что и априорная плотность вероятности f(x). В таком случае плотности вероятности могут быть записаны соответственно как f(х|) и f (х|). Далее, f' (х) можно найти путем простого пересчета и на основе дополнительных данных.
Дата добавления: 2014-01-04; Просмотров: 265; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |