Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейные операции над векторами

Определение. Суммой называется вектор , который может быть найден по следующим правилам (рис.4.2).

Свойства сложения векторов:

1) , (коммутативность);

2) , (ассоциативность);

3) прибавление нулевого вектора к любому другому не меняет последнего ;

4) вектор, противоположный вектору , обозначается . Их сумма дает нулевой вектор .

Правило треугольника Правило параллелограмма

Рис. 4.2

Определение. Разность есть сумма (рис.4.3).

 

Рис.4.3

Определение. Произведением вектора на вещественное число называется любой вектор , удовлетворяющий следующим условиям:

а) вектор коллинеарен вектору ;

б) ;

в) векторы и направлены одинаково если и противоположно направлены если

<== предыдущая лекция | следующая лекция ==>
Векторная алгебра. Понятие вектора, координаты, модуль вектора. Линейные операции над векторами. Базис | Свойства умножения вектора на число
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 345; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.