КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Безвідходні технології як основний важіль охорони навколишнього природного середовища та економії ресурсів
При вирішенні проблеми безвідходності виробництва слід мати на увазі дві сторони єдиного процесу. Перше — це найбільш раціональний видобуток та повне використання ресурсів і як наслідок зменшення утворення відходів. Друге — це розширення використання відходів, що утворюються. Ці шляхи не виключають, а взаємно доповнюють один одного. Безвідходне виробництво передбачає встановлення повного контролю над рухом матеріальних ресурсів на всіх стадіях: видобутку сировини, її виробничої переробки, споживання, утилізації відходів виробництва і споживання. Безвідходні технології стають ефективними навіть у тих випадках, коли собівартість одержаної продукції стає вищою. Проте необхідно, щоб перевитрати виробництва були меншими, ніж економія на зменшенні збитків від забруднення навколишнього середовища. Впровадження безвідходних технологій є також шляхом значного розширення ресурсних можливостей людства. Особливо красномовно це видно на прикладі мінерально-сировинної бази. Маються на увазі зокрема можливості підземної газифікації вугілля. Далі за потенціалом стоїть впровадження геотехнологічних засобів видобування корисних копалин — підземного вилуговування металів, солей; мікробіологічні технології вилучення корисних компонентів з руд; освоєння гідромінеральних ресурсів, в тому числі морської води і розсолів для вилучення металів та солей. Цікаво проілюструвати такі можливості стосовно України, де на етапі реконструкції народного господарства постало завдання використати власні ресурси за умов низьких витрат і мінімізації екологічного ризику. Тут відповідні проблеми є особливо актуальними, враховуючи, що видобуток вугілля, нафти, газу, залізних руд і ряду неметалевих видів корисних копалин ведеться з усе більших глибин, супроводжується зменшенням потужності пластів, ускладненням гірничотехнічних умов видобутку тощо. Вугільні родовища України по суті є комплексними вугільно-метановими. Але другий компонент до останнього часу розглядається як шкідлива домішка, що ускладнює видобування власне вугілля. В той же час сучасні технології (в рамках реалізації українсько-американського проекту) дозволяють вже на першому етапі отримувати в Донбасі 5 млрд м3 газу, що майже на третину збільшить газовидобуток в Україні. Перші підприємства з вилучення метану у промислових масштабах засновано також у Львівсько-Волинському регіоні. Новітні технології видобутку нафти і газу спроможні оживити і надати друге життя багатьом старим, начебто вичерпаним родовищам. Стосовно діючих вони дозволяють підвищити вилучення нафти з продуктивних пластів зі звичних зараз 35—40 % до 60—65 % і більше. Освоєння геотермальних ресурсів — передусім Карпат, Криму та низки інших регіонів — є також потужним додатковим джерелом енергоресурсів. Перші свердловини термальних вод уже живлять тепломережі деяких населених пунктів, обслуговують парникові господарства тощо. Одним із напрямків науково-технологічного прогресу, що забезпечує охорону навколишнього середовища і раціональне використання природокористування, є комплексне використання природних ресурсів. Комплексне використання — це найповніше, економічно найдоцільніше використання всіх корисних компонентів, що містяться в сировині, а також використання залишкових продуктів (в будівництві тощо). Як приклад візьмемо мінеральну сировину. В природі практично не існує монокомпонентних її видів. Нафта, вугілля, залізні і марганцеві руди, титанові, ртутні, калійні, нікелеві, уранові руди, первинні каоліни у своєму складі мають у відносно підвищених концентраціях цінні компоненти, а саме: · нафта містить деякі кольорові метали, перш за все ванадій і нікель; · вугілля Донбасу характеризується високим вмістом германію, ртуті, молібдену, миш’яку, меншою мірою рідкісноземельних металів, літію, рубідію, цезію та деяких інших; · залізні руди містять германій, скандій, ванадій, золото, срібло, а також вісмут, стронцій, нікель, титан, уран; · ртутні руди — сурму, золото, срібло; · марганцеві руди — ітрій, рубідій, стронцій, свинець, цинк; · каоліни — рідкісноземельні елементи. У гірничодобувній та переробній промисловості повна і комплексна розробка родовищ та використання сировини передбачає підвищення коефіцієнта вилучення запасів корисних копалин із надр, використання розкривних і супутніх порід, продуктів збагачення, застосування більш глибинних методів переробки задля більшого виходу готового продукту (концентрату) та вилучення всіх супутніх компонентів. У металургійній промисловості найперспективнішими є технології прямого відновлення заліза (минаючи доменний процес), засновані на використанні залізорудних металізованих обкатанців, природного газу та твердого палива; розширення використання киснево-конверторної виплавки та електроплавки (з безперервним литтям заготовок); підвищення частки металобрухту в шихті; подальший розвиток спеціальних методів виплавки сталі з підвищеними експлуатаційними характеристиками. У прокатному виробництві — це технологічні процеси, що об’єднують операції прокату і безперервної розливки, застосування термообробки, нанесення захисних покриттів та ін. У машинобудуванні та металообробці — застосування технологій пластичної деформації, сучасних методів оброблення металів. У промисловості будівельних матеріалів — удосконалення технологій виробництва цементу, скла, цегли, залізобетону на базі широкого використання таких альтернативних джерел сировини, як золошлаки теплоелектростанцій, шлами вуглезбагачення, шлаки і шлами металургійної промисловості. Біотехнологія — один із важливих напрямів науково-технічного прогресу, що швидко розвивається. Технологія базується на промисловому застосуванні природних і цілеспрямовано створених живих систем (перш за все мікроорганізмів). Виробництва, засновані на біологічних процесах, виникли уже на ранніх етапах історії людства (наприклад, хлібопечення, виноробство, сироваріння та ін.). З розвитком науки виникли нові галузі біотехнології, тісно пов’язані з мікробіологічною промисловістю. Продукти біотехнології знайшли широке застосування в медицині, сільському господарстві. Після другої світової війни методами біотехнології стали отримувати кормовий білок, для виробництва якого використовують окремі фракції вуглеводнів нафти, відходи целюлозно-паперової промисловості, солому та ін. Поряд з кормовим білком значне місце в мікробіологічному виробництві займають такі продукти, як вітаміни, амінокислоти, добрива, біологічні засоби захисту рослин. Перспективним напрямом у розвитку сучасної біотехнології є інженерна ензимологія, важливим досягненням якої є створення іммобілізованих (зв’язаних з полімерним носієм) ферментів і ферментних комплексів. Ці речовини застосовуються для здійснення складних хімічних процесів, у тому числі для перероблення сільськогосподарських, харчових і побутових відходів. Біоенергетика — один із напрямів біотехнологій і перспективний напрям вирішення енергетичних і сировинних проблем, які постали перед людством в кінці ХХ століття. Вона ставить своїм завданням отримання відновлюваних (на відміну від невідновлюваних — вугілля, нафта, газ, уран та ін.) джерел енергії і сировини. В цьому розумінні передбачається широке використання методів хімічної і біологічної трансформації біомаси в паливо і продукти органічного синтезу, а також застосування біологічних генераторів струму. Найефективніші з відомих методів — використання фототрофних мікроорганізмів, що конвертують сонячне випромінювання в енергію хімічних зв’язків, біотоліз води з отриманням водню, метанове бродіння органічних речовин в метан та ін. Як сировина для метанового бродіння використовуються органічні відходи тваринництва, птахівництва, промислові і комунальні стічні води та ін. Одним з напрямів безвідходного виробництва є створення водооборотних систем, в основі функціонуванні яких лежить багаторазове використання води, після чого чисті води повертаються у водойми. Методи очищення води повинні забезпечувати одночасне вилучення та утилізацію цінних компонентів. Що більша кратність використання води, то досконаліша система водопостачання. На окремих підприємствах Японії та США кратність використання водних ресурсів становить 22—27 разів. Сучасний етап розвитку науково-технологічного прогресу характеризується все активнішим впливом фундаментальних досліджень на технологію виробництва. Це веде до корінного якісного перетворення продуктивних сил, зміни матеріально-технічної бази суспільного виробництва, його змісту і форми. Принципово нові сучасні технології (ядерна, електронна, лазерна та ін.) виникли на базі фундаментальних наукових відкриттів і відрізняються використанням матеріалів і принципів їх оброблення, що не зустрічаються в природі. Трансформація наукових знань в технології стає одним із вирішальних факторів суспільного розвитку. Прикладом цьому є: електронізація на базі ПЕОМ, комплексна автоматизація (включаючи системи нових видів матеріалів із заданими властивостями, а також понадчистих унікальних сплавів, нових технологій виробництва і оброблення) нові технології лиття, плазмові процеси, лазерні технології, освоєння біотехнологій тощо. Використання нових технологічних рішень і удосконалення існуючих технологій сприяють оптимальному використанню ресурсів, підвищують їх віддачу, зменшують витрати ресурсів та утворення відходів, забезпечують раціональніше їх використання в галузях економіки. В цілій низці проявів науково-технологічний прогрес демонструє високий рівень універсалізму у вирішенні суспільних проблем, забезпечуючи одночасно безвідходність, ресурсозбереження, комплексність і підвищення екологічності в цілому. Розглянемо феномен такого роду на прикладі вугілля, спалювання якого стає тепер одним із найбільших джерел забруднення природного середовища внаслідок викидів в атмосферу оксидів азоту, сірчаного газу, важких металів, у тому числі й урану. Щодо металів, то це є одночасно «вилітанням в трубу» важливих для промисловості ванадію, германію, нікелю, кадмію, кобальту, цинку тощо. Решта ж інших цінних компонентів залишається в шлаках і переходить у відвали відходів. Для підвищення ефективності згорання вугілля і зменшення забруднення середовища останнім часом розроблено нові технології, наприклад котли з топками з киплячим поверхневим шаром і різні типи фільтрів. Але повне вилучення корисних копалин і повне використання енергопотенціалу, а також мінімізація забруднення довкілля вимагають радикальної перебудови технології видобутку вугілля і його збагачення. Науково-технологічний прогрес відкриває шлях до цього — через попереднє перетворення вугілля в газ і вилучення під час газифікації шкідливих для навколишнього середовища (проте цінних для промисловості) компонентів. Процес газифікації було освоєно промислово ще в першій половині минулого століття (він забезпечував потреби у синтез-бензині Німеччини і Південно-Африканської республіки). Нині роботи з дослідження і практичного використання газифікації вугілля знову набули широкого розмаху. У США, Великобританії та Німеччині частка вугілля, яке газифікується, сягає уже перших десятків відсотків. Існують фабрики, де металургійний процес супроводжується використанням газифікованого вугілля та ін. Нові можливості відкривають технології газифікації вугілля у відновному середовищі, що дозволяють здійснювати його повну переробку. Водночас із газифікацією в таких установках відбувається відновлення оксидів металів, металізація залізнорудних обкатанців. Тому зникає потреба в доменній печі. Для відновлення руди не потрібен і кокс — достатньо й високозольного вугілля. В умовах енергетичної кризи вигода використання в металургійному процесі високозольного вугілля й ліквідація доменного і коксохімічного виробництва в чорній металургії є особливо очевидною. Будівельна промисловість на основі залишкових речовин забезпечуватиметься безцементними будівельними матеріалами. Одним із головних напрямів інтенсифікації суспільного виробництва є зростання випуску продукції без відповідного збільшення залучених у господарський обіг усіх видів ресурсів. Перш за все це стосується сировини, матеріалів, палива. В теперішній час вони складають більше половини витрат на виробництво сукупного продукту країни. Тому одним із вирішальних факторів інтенсифікації суспільного виробництва є ресурсозбереження. Ресурсозбереження включає комплекс заходів щодо заощадження і раціонального використання сировини, матеріалів, палива і енергії в промисловості, будівництві, агропромисловому комплексі і зниження на цій основі ресурсомісткості продукції. Шляхи вирішення проблем ресурсозаощадження різноманітні. Перш за все це широке використання новітньої техніки і технології, сучасних організаційних форм, дійового економічного механізму. До основних напрямів ресурсозаощадження належать: · нарощування прогресивних зрушень в структурі виробництва, випереджувальний ріст обробних галузей та наукомістких виробництв у порівнянні з паливно-сировинними галузями, підвищення питомої ваги менш матеріало-, метало- та енергомістких виробництв; · випереджувальне зростання виробництв ефективних видів матеріалів і устаткування в галузях економіки; · застосування замінників металів: заміщення традиційних видів сировини, матеріалів, палива ефективнішими аналогами; · підвищення рівня використання вторинних ресурсів, заощадження за цей рахунок первинної сировини і матеріалів; · підвищення якості і надійності продукції, зниження конструктивної і питомої метало- і енергомісткості машин і устаткування; · захист металів від корозії (розширене використання і застосування корозійностійких матеріалів, сплавів, композиційних матеріалів, кераміки, прогресивних технологій покриття металів та інгібіторів корозії тощо); · підвищення в оптимальних межах потужності машин і устаткування при одночасному зменшенні їх габаритів. Провідне місце в реалізації політики ресурсозаощадження і зниження ресурсомісткості продукції належить розробленню та освоєнню ресурсозаощадливих технологій. Ресурсозаощадливі технології створюються на базі або удосконалення існуючих шляхом заміни їх окремих елементів на прогресивніші (ресурсозаощаджуючі), або переходу до принципово нових технологічних систем. Приклади ресурсозаощадливих технологій: · конверторне виробництво з безперервним розлиттям сталі і регульованим прокатом; · нові малостадійні безвідходні технології нафтохімічної і хімічної промисловості. Проблема підвищення ефективності виробництва тісно пов’язана з проблемою заощадження матеріальних ресурсів і зниження матеріаломісткості виробництва (продукції). Причому ефект економії ресурсів складається не тільки з вартості заощаджених сировини, матеріалів, енергоресурсів, а також із скорочення витрат на їх транспортування, зберігання, оброблення, видобуток сировини тощо. Матеріаломісткість продукції визначається як відношення всієї сукупності поточних матеріальних витрат до обсягу продукції за певний період часу. Вона може виражатися в натуральних, вартісних і натурально-вартісних показниках. Основні напрями зниження матеріаломісткості продукції: · поліпшення якості сировини і матеріалів; · впровадження маловідходних технологічних процесів; · розширення використання вторинних ресурсів; · скорочення витрат ресурсів при виробництві продукції, транспортуванні і зберіганні; · підвищення якості продукції. Енергомісткість характеризує витрати енергії на основні і допоміжні технологічні процеси виробництва продукції. Вона чисельно дорівнює витратам енергії (палива, електро-, теплоенергії) на одиницю продукції. Повна енергомісткість продукції — витрати енергії (палива) на видобуток, транспортування і переробку корисних копалин і виготовлення сировини і матеріалів з урахуванням коефіцієнта використання. Питома енергомісткість продукції — витрати енергії (всіх видів) на одиницю продукції. Зниження енергомісткості продукції включає комплекс заходів щодо раціонального використання і заощадження всіх видів енергії (палива, теплоенергії, електроенергії) на всіх стадіях технологічних переділів від видобутку, виробництва, транспортування і виробничого споживання. Основні напрями зниження енергомісткості: · розроблення, освоєння і впровадження енергозаощадливих технологій у всіх сферах виробничої діяльності; · зниження витрат енергоресурсів на всіх стадіях від видобутку до споживання; · підвищення коефіцієнта корисної дії машин і механізмів; · зниження витрат палива, енергії на одиницю потужності чи обсягу робіт; · використання вторинних енергетичних ресурсів та паливовмісних відходів. 2.3.4. Вторинне ресурсокористування
Інтенсивному типові розширеного відтворення виробництва відповідає перехід на повне, повторне і багаторазове використання сировини, яка залучається у господарський обіг. Цим забезпечується відносна стабілізація і наступне скорочення первинного ресурсокористування. Вторинне ресурсокористування, є таким чином, довгостроковою стратегією розвитку всього світового господарства і відповідно окремих країн. З позицій вторинного ресурсокористування також вирішується проблема впровадження безвідходних технологій, про що йшлося вище. Але при цьому питання ставиться ширше. Мова йде не про конкретні технології і відповідні виробничі об’єкти, а про суспільне виробництво в цілому, про окремі територіально-виробничі комплекси. Саме з цих позицій виходять найзагальніші і всеосяжні визначення терміну «безвідходні технології». Зокрема одне з кращих визначень запропоновано ще 1984 року Європейською економічною комісією ООН з маловідходних технологій. Останні визначаються як «такий спосіб здійснення виробництва продукції (процес, підприємство, територіально-виробничий комплекс), за якого найбільш раціонально та комплексно використовується сировина і енергія в циклі «сировинні ресурси-виробництво-споживання-вторинні сировинні ресурси» таким чином, що будь-які впливи на навколишнє середовище не порушують його нормального функціонування». Це означає, що відходи, переходячи в категорію нового елемента виробництва, стають знову його початковою ланкою, тобто його сировинною базою. Причому відповідний рециклінг в принципі не має обмежень за числом обігів і дозволяє поступово витісняти первинну сировину, хоча про стовідсоткове витіснення практично не йдеться. Цифри в цьому відношенні є дуже красномовними. В розвинутих країнах світу, зокрема в США, із вторинної сировини отримують понад 20 % всього виробництва алюмінію, 33 % заліза, 50 % свинцю і цинку, 44 % міді тощо. Маються на увазі насамперед ресурси у вигляді лому цих металів. Але рециклінг стосується і гуми, і пластмас, і мастильних матеріалів, і багатьох інших. Певного досвіду використання вторинних ресурсів набуто і в Україні. Введення в 1981 році загальнодержавного планування використання вторинних ресурсів сприяло збільшенню обсягів залучення їх до виробництва. За розрахунками вторинне ресурсокористування — зі складу відходів — в кінці 80-х років складало 11—12 % загального ресурсокористування. Однак на протязі 90-х років спостерігалась тенденція до спаду обсягів їх використання, які зменшилися в 3 рази. Посилення державного регулювання наприкінці 90-х років сприяло зміні негативних тенденцій щодо використання відходів. Починаючи з 2000 року стали збільшуватись і відносні, і абсолютні показники використання відходів як вторинної сировини, що свідчить про тенденцію до ресурсозбереження в національній економіці. Світовий та вітчизняний досвід визначають низку безумовних авторитетів вторинного ресурсокористування. Це пов’язано, перш за все, з високою ефективністю використання залишкових продуктів кінцевого споживання. Мається на увазі вторинний метал, макулатура, вторинні матеріали, скло, гума, дерево, відпрацьовані нафтопродукти, металовмісні та деякі паливовмісні відходи. Макулатура використовується для отримання широкої гами целюлозно-паперової продукції. Використання 1 т вторинного волокна взамін деревної маси дозволяє заощадити від 2,6 до 5 м3 деревини, від 105 до 780 кВт/год електроенергії та ін. Відходи деревинивикористовуються для виробництва деревостружкових плит, інших композиційних матеріалів, гідролізної продукції. В Україні згідно зі статистичною звітністю за 2002 рік обсяги утилізації найважливіших видів вторинної сировини (за номенклатурою із 51 виду) склали 83,4 млн т, що становить 44,9 % до їх утворення. Поряд з розширенням традиційних напрямів використання цих видів вторинної сировини передбачається розвиток нових технологій композиційних матеріалів на базі відходів деревини, полімерів, зношених шин тощо. Важливого значення набуває розвиток системи збирання та створення потужностей по переробці картонної, скляної, металевої та пластикової тари і упаковки. Відходи знаходять застосування у багатьох галузях для виробництва промислової продукції, будівельних матеріалів, комбікормів, добрив та ін., замінюючи природні ресурси (рудні концентрати, паливо, деревину, природні нерудні матеріали тощо). Одним із пріоритетних напрямів у сфері використання вторинних ресурсів виступає подальша розробка технологій і розширення виробництв з переробки багатотоннажних відходів видобувної, металургійної, хімічної та інших галузей промисловостів будівельні матеріали і конструкції. До таких відходів відносяться відвальні розкривні і супутні породи, шлаки металургійної промисловості, золи і шлаки теплоелектростанцій, фосфогіпс та ін. Найперспективнішими є вже створені чи розроблювані технології використання відходів як домішок в сировинні суміші для виробництва різних будівельних матеріалів і конструкцій, а також розробки, пов’язані з повною чи частковою заміною природної сировини у виробництві цементу, керамічної і силікатної цегли, бетонів, пористих заповнювачів та інших матеріалів. Відповідно до зазначеного в мінерально-сировинному комплексі при визначенні можливостей матеріально-технічного забезпечення приросту виробництва промислової продукції слід враховувати наявність великих обсягів вторинних ресурсів і можливості їх переробки. Відходи гірничовидобувної промисловості включають розкривні, супутні породи та відходи збагачення корисних копалин. Основна маса розкривних порід використовується для рекультивації земель, будівництва дамб, доріг, планування території, а також для закладки гірничих виробок. Окремі види розкривних і супутніх порід (скельні породи, бентонітові глини, вапняки, талькові сланці, пісок можуть використовуватись для виробництва будівельних матеріалів (щебеню, кераміки, скла, цементу). Відходи збагачення використовуються для виготовлення щебеню і піску як заповнювачі бетонів, для будівництва дамб, доріг та ін. Через складові шлами при повторному збагаченні можуть бути отримані марганцеві і залізорудні концентрати. Вони можуть розглядатися як резервна сировина. Найбільш багатотоннажними відходамичорної металургії, що знайшли масове використання, є металургійні шлаки і залізовмісні шлами. Основними видами продукції, що виготовляється із них, є гранульований шлак (що використовується у виробництві цементу), щебінь для будівництва, зворотний продукт для металургії, шлакове борошно (як меліорант), шлакова вага. Крім того, при переробці шлаків вилучається метал, що повертається на переплав у основне виробництво. Залізовмісні відходи металургійних підприємств, що утворюються при очистці газів і стічних вод, використовуються на цих же підприємствах як домішки в агломераційну шихту. Вони також придатні для виробництва цементу. В процесі виробництва глинозему утворюються червоні шлами, що містять оксиди заліза, кальцію та ін. Вони використовуються в цементній промисловості, в чорній металургії, сільському господарстві. Оскільки вони містять такі компоненти, як золото, галій, скандій, ітрій та інші, то можуть розглядатися як техногенне родовище цих корисних копалин. На сьогоднішній день на Миколаївському глиноземному заводі освоєна технологія вилучення галію із алюмінатних розчинів. Золи і шлаки теплових електростанцій знайшли масове застосування в будівництві і виготовленні будівельних матеріалів, зокрема у виробництві бетонів, цементу, пористих заповнювачів та ін. Поруч з виготовленням будматеріалів намічається їх використання для вилучення вуглецю, кольорових та інших металів, які вони містять у відносно підвищених концентраціях. Перспективним є вилучення феросиліцію для чорної металургії. Вартість отриманого матеріалу в 3 рази нижча, ніж на феросплавних заводах. Відходи вуглевидобутку і вуглезбагачення в масових масштабах використовуються для закладки виробленого простору шахт, виготовлення будівельних матеріалів. Щодо відходів вуглезбагачення, які часто містять до 20 і більше відсотків вуглецю, то найбільш перспективним є їх використання як палива за спеціальними технологіями. Одним з ефективних напрямів їх використання є також виготовлення керамічної цегли, де вони використовуються як паливно-мінеральні домішки. Поряд із заощадженням первинної сировини їх застосування дає значну економію палива (до 80 %). Наявність низки цінних компонентів у складі ресурсного потенціалу відходів визначає інвестиційну привабливість окремих об’єктів. Важливим аспектом реструктуризації металургійної галузі має стати розвиток вторинної металургії. Передумовою для цього є наявний в Україні металофонд. Проведені оцінні роботи на окремих об’єктах накопичення відходів дають підстави очікувати їх віднесення до категорії техногенних родовищ, кольорових, рідкісних, благородних металів та деяких інших видів мінеральної сировини. Наприклад, відходи Микитівського ртутного комбінату містять ртуть, сурму, миш’як, літій, золото, срібло. Розширення ресурсних можливостей за рахунок відходів має виходити з визначення їх ресурсної цінності і технологічних можливостей їх залучення у виробництво, обґрунтування напрямів та шляхів найбільш ефективного використання відходів, створення на основі ресурсно-технологічних передумов територіально-виробничих комплексів із замкненими ресурсними циклами тощо. При цьому важливе значення має надаватися розробленню та виконанню відповідних державних, регіональних, галузевих програм, які спрямовуються на вирішення найважливіших екологічних і ресурсних проблем, створення нових підходів до вирішення проблем відходів та засобів їх реалізації.
Дата добавления: 2014-01-04; Просмотров: 1937; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |