Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Соотношение неопределенностей Гейзенберга

Природа волн де Бройля

Волны де Бройля не являются обычными волнами. Они имеют статистический смысл.

Если через фольгу пропустить небольшое число электронов, то на экране будет картина, похожая на мишень, простреленную плохим стрелком. Если число электронов большое, то получится обычная дифракционная картина. Такое поведение частиц привело к статистическому толкованию волн де Бройля. Интенсивность волн де Бройля в каком-либо месте пространства пропорциональна вероятности обнаружения частицы в этом месте в данный момент. Поведение отдельных электронов случайно. Повеление большого числа электронов закономерно. Нельзя угадать движение каждой отдельной частицы, можно говорить лишь о вероятности ее попадания в данную точку экрана.

 

В классической механике каждая частица движется по определенной траектории, то есть в любой момент времени она имеет определенную координату и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении частиц по определенной траектории, то есть нельзя одновременно точно определить значение координаты и импульса.

Для того, чтобы рассмотреть эту важнейшую особенность микрочастиц будем исходить из явления их дифракции. Согласно гипотезе де Бройля . Слева стоит длина волны, но она не является функцией координат. Выражение «длина волны в точке равна » - бессмысленно, но так как импульс выражается через длину волны, то он тоже не должен зависеть от координаты. Отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату. Выражение «импульс частицы в точке равен » в квантовой механике не имеет смысла.

Положение, что микрочастица не имеет одновременно вполне точные значения координаты и импульса выражено в соотношение неопределенностей Гейзенберга:

.

Из соотношения неопределенностей следует, что если микрочастица находится в состоянии с точным значением координаты (), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопределенной (), и наоборот.

Соотношение неопределенностей Гейзенберга можно пояснить на примере дифракции электронов. Пусть поток электронов проходит через узкую щель шириной , расположенную перпендикулярно направлению их движения (рис. 1).

Рис.1.

Так как электроны обладают волновыми свойствами, то при их прохождении через щель, размер которой сравним с длиной волны де Бройля для электрона, наблюдается дифракция. Дифракционная картина, наблюдаемая на экране, характеризуется главным максимумом, расположенным симметрично оси , и побочными максимумами по обе стороны от главного (мы их не рассматриваем, так как основная доля интенсивности приходится на главный максимум).

До прохождения через щель электроны двигались вдоль оси , поэтому составляющая импульса , так что , а координата частицы является совершенно неопределенной. В момент прохождения электронов через щель их положение в направлении оси определяется с точностью до ширины щели, то есть с точностью . В тот же момент вследствие дифракции электроны отклоняются от первоначального направления, и будут двигаться в пределах угла . Появляется неопределенность в значении составляющей импульса вдоль оси , которая равна, как следует из рис.1.:

.

Условие максимума при дифракции на щели , для первого минимума , . То есть

.

Из этих формул получим:

.

Если учесть, что часть электронов попадает за предела главного максимума, то величина , то есть

.

Соотношение неопределенностей верно для любых движущихся тел, но для макроскопических тел длина волны де Бройля ничтожно мала и не играет роли, и соотношение неопределенностей тоже несущественно. Можно говорить об одновременных значениях и , а следовательно, о траектории. Так как , то если велико мало (частицы большой массы – классические частицы).

 

<== предыдущая лекция | следующая лекция ==>
Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля | Уравнение Шредингера. Волновая функция
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 389; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.